
Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Fn Traits

Florian “Florob” Zeitz

2018-09-05

1 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

1 Reinventing the wheel

2 Let’s have an Argument

3 Closures

4 Call me maybe?

2 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

1 Reinventing the wheel

2 Let’s have an Argument

3 Closures

4 Call me maybe?

3 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Greeter

1 struct Greeter;
2

3 impl Greeter {
4 fn call(...) {
5 println!("Hello Rust");
6 }
7 }

What is the most logical choice for
calls argument?

A self

B &self

C &mut self

D Nothing (not a method)

4 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Greeter

1 struct Greeter;
2

3 impl Greeter {
4 fn call(...) {
5 println!("Hello Rust");
6 }
7 }

What is the most logical choice for
calls argument?

A self

B &self

C &mut self

D Nothing (not a method)

4 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Greeter

1 struct Greeter;
2

3 impl Greeter {
4 fn call(&self) {
5 println!("Hello Rust");
6 }
7

8 fn call_mut(&mut self) {
9 self.call()

10 }
11

12 fn call_once(self) {
13 self.call()
14 }
15 }

We can implement all variants
&mut self can be re-borrowed
as &self

self can be borrowed as &self

5 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

More Useful Greeter

1 struct Greeter(String);
2

3 impl Greeter {
4 fn call(&self) {
5 println!("Hello {}", self.0);
6 }
7

8 fn call_mut(&mut self) {
9 self.call()

10 }
11

12 fn call_once(self) {
13 self.call()
14 }
15 }

What if we attach data to
our struct?
Makes no difference as long
as we only use it by &T
reference

6 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Fibonacci

1 struct Fib(u64, u64);
2

3 impl Fib {
4 fn call(...) -> u64 {
5 let res = self.0;
6 self.0 = self.1;
7 self.1 += res;
8 res
9 }

10 }

What is the most logical choice
for calls argument?

A self

B &self

C &mut self

D Nothing (not a method)

7 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Fibonacci

1 struct Fib(u64, u64);
2

3 impl Fib {
4 fn call(...) -> u64 {
5 let res = self.0;
6 self.0 = self.1;
7 self.1 += res;
8 res
9 }

10 }

What is the most logical choice
for calls argument?

A self

B &self

C &mut self

D Nothing (not a method)

7 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Fibonacci

1 struct Fib(u64, u64);
2

3 impl Fib {
4 fn call_mut(&mut self) -> u64 {
5 let res = self.0;
6 self.0 = self.1;
7 self.1 += res;
8 res
9 }

10

11 fn call_once(mut self) -> u64 {
12 self.call_mut()
13 }
14 }

Obviously can’t do &self
anymore
self can be borrowed as
&mut self

8 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Nonce

1 struct Nonce(Vec<u8>);
2

3 impl Fib {
4 fn call(...) -> Vec<u8> {
5 self.0
6 }
7 }

What is the most logical choice
for calls argument?

A self

B &self

C &mut self

D Nothing (not a method)

9 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Nonce

1 struct Nonce(Vec<u8>);
2

3 impl Fib {
4 fn call(...) -> Vec<u8> {
5 self.0
6 }
7 }

What is the most logical choice
for calls argument?

A self

B &self

C &mut self

D Nothing (not a method)

9 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Nonce

1 struct Nonce(Vec<u8>);
2

3 impl Fib {
4 fn call_once(self) -> Vec<u8> {
5 self.0
6 }
7 }

Has to take self

Moves its inner value out
once

10 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Some Traits

We’ve seen there is no one size fits all solution. We can define some traits
though:

1 trait FnOnce {
2 type Output;
3 fn call_once(self) -> Self::Output;
4 }
5

6 trait FnMut: FnOnce {
7 fn call_mut(&mut self) -> Self::Output;
8 }
9

10 trait Fn: FnMut {
11 fn call(&self) -> Self::Output;
12 }

11 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

1 Reinventing the wheel

2 Let’s have an Argument

3 Closures

4 Call me maybe?

12 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Arguments

Aren’t we missing something?
With our current traits we can return any Type, but take no
arguments
We want to take an arbitrary number of parameters with varying
types (variadic)
Rust has no variadic generics

13 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

The Real Traits

1 trait FnOnce<Args> {
2 type Output;
3 extern "rust-call" fn call_once(self, args: Args) ->

Self::Output;↪→

4 }
5

6 trait FnMut<Args>: FnOnce<Args> {
7 extern "rust-call" fn call_mut(&mut self, args: Args) ->

Self::Output;↪→

8 }
9

10 trait Fn<Args>: FnMut<Args> {
11 extern "rust-call" fn call(&self, args: Args) -> Self::Output;
12 }

These traits are all unstable to implement.
14 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

The Catch

We can’t impl these traits ourselves
Closures automatically implement them
Functions automatically implement them
We can’t directly use these traits as bounds
There is sugar for Fn trait bounds

15 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

1 Reinventing the wheel

2 Let’s have an Argument

3 Closures

4 Call me maybe?

16 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Greeter

1 let mut greeter =
2 || println!("Hello Rust!");
3

4 greeter();
5 greeter.call(());
6 greeter.call_mut(());
7 greeter.call_once(());

Desugars to the same thing
as our first example
Except it implements the Fn
traits
All possible ones

17 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

More Useful Greeter

1 let name = "Cologne".to_string();
2 let mut greeter =
3 || println!("Hello {}!", name);
4

5 greeter();
6 greeter.call(());
7 greeter.call_mut(());
8 greeter.call_once(());

This is the same as our
second example.
Or is it?

18 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

More Useful Greeter

1 fn greeter(
2 name: String
3) -> impl Fn() {
4 || println!("Hello {}!", name)
5 }
6

7 let mut greeter =
8 greeter("Cologne".into());
9

10 greeter();
11 greeter.call(());
12 greeter.call_mut(());
13 greeter.call_once(());

closure may outlive the
current function, but it
borrows ‘name‘, which is
owned by the current
function
Wait... borrows?

19 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

More Useful Greeter

1 struct Greeter {
2 name: &String
3 }
4

5 // Pseudocode!
6 impl Fn for Greeter {
7 fn call(&mut self) {
8 println!("Hello {}!", self.name);
9 }

10 }

This is the actual
desugaring
Closures capture
variables based on their
usage
Capturing means taking
a reference, or storing
(moving) the value

20 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

More Useful Greeter

1 fn greeter(
2 name: String
3) -> impl Fn() {
4 move || println!("Hello

{}!", name)↪→

5 }
6

7 let mut greeter =
8 greeter("Cologne".into());
9

10 greeter();
11 greeter.call(());
12 greeter.call_mut(());
13 greeter.call_once(());

Actually desugars to our
second example
move enforces moving the
values captured from the
environment
Closures can still contain
references, in case the
captured value is a
reference

21 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Fibonacci

1 let mut a = 1;
2 let mut b = 1;
3 let mut fib = move || {
4 let res = a;
5 a = b;
6 b += res;
7 res
8 };
9

10 fib();
11 // error: `Fn` is not implemented
12 // fib.call(());
13 fib.call_mut(());
14 fib.call_once(());

Desugars to our Fibonacci
example
Implementing Fn is not
possible, so the compiler
doesn’t

22 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Nonce

1 let n = vec![4, 8, 15, 16, 23, 42];
2 let nonce = || n;
3

4 nonce();
5 // error: `Fn` is not implemented
6 // nonce.call(());
7 // error: `FnMut` is not implemented
8 // nonce.call_mut(());
9 // error: value has been moved ;)

10 nonce.call_once(());

Desugars to our Nonce
example
Implementing Fn and
FnMut is not possible, so
the compiler doesn’t
Behaves the same with
and without move,
closure has to move the
value to return it

23 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

1 Reinventing the wheel

2 Let’s have an Argument

3 Closures

4 Call me maybe?

24 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Fn Trait Bounds

Can’t use the unstable Fn traits as bounds directly
But there is sugar that we can use
And it conveniently looks like a function signature

Fn(u32) -> u64
FnMut(&str) -> i32
FnOnce(u8) -> String

25 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Map One

1 struct Abstraction<T>(T);
2

3 impl<T> Abstraction<T> {
4 fn map<U, F>(self, f: F) -> Abstraction<U>
5 where F: FnOnce(T) -> U
6 {
7 Abstraction(f(self.0))
8 }
9 }

While it may seem strange at first FnOnce is the most general trait bound.
Everything can be called at least once.

26 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Map Two

1 struct Abstraction2<T>(T, T);
2

3 impl<T> Abstraction2<T> {
4 fn map<U, F>(self, mut f: F) -> Abstraction2<U>
5 where F: FnMut(T) -> U
6 {
7 Abstraction2(f(self.0), f(self.1))
8 }
9 }

When you need to call the function more than once FnMut is the next
best option. Choosing Fn as a bound is rare as it gives the calling
function almost no additional options.

27 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Give me five

1 fn give5() -> impl Fn() -> u64 {
2 || 5
3 }
4

5 let dave_brubeck = give5();
6 assert_eq!(5, dave_brubeck());

When returning a closure Fn is most general since it allows calling the
object multiple times and behind any kind of reference.

28 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Give me 5n

1 fn counter() -> impl FnMut() -> u64 {
2 let mut n = 0;
3 move || {
4 n += 1;
5 5 * n
6 }
7 }

Depending on the traits the closure can actually implement, we fall
back to FnMut or FnOnce.

29 / 30

Fn Traits

Florob

Reinventing
the wheel

Let’s have an
Argument

Closures

Call me
maybe?

Questions

Thank you for your attention.
Any questions?

https://babelmonkeys.de/~florob/talks/RC-2018-09-05-fn-traits.pdf

30 / 30

https://babelmonkeys.de/~florob/talks/RC-2018-09-05-fn-traits.pdf
https://babelmonkeys.de/~florob/talks/RC-2018-09-05-fn-traits.pdf

	Reinventing the wheel
	Let's have an Argument
	Closures
	Call me maybe?
	Questions

