
Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What you thought you knew about C

Florian “Florob” Zeitz

2015-03-25

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Disclaimer: What are we talking about?

C99 and/or C11

not necessarily C++

but Objective-C, as it works as a real superset

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Disclaimer: What are we talking about?

C99 and/or C11

not necessarily C++

but Objective-C, as it works as a real superset

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Disclaimer: What are we talking about?

C99 and/or C11

not necessarily C++

but Objective-C, as it works as a real superset

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

1 Undefined behaviour

2 Strict aliasing

3 Arrays

4 Conversions

5 Fun with C99 (and above)

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

1 Undefined behaviour

2 Strict aliasing

3 Arrays

4 Conversions

5 Fun with C99 (and above)

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What’s this?

Multiple types of “behaviour”:

implementation-defined behaviour

documented implementation choice (e. g. signedness of char)

unspecified behaviour

more than one possibility (e. g. evaluation of function arguments)

undefined behaviour

everything goes, input program is considered erroneous (e. g.

use-after-free)

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What’s this?

Multiple types of “behaviour”:

implementation-defined behaviour

documented implementation choice (e. g. signedness of char)

unspecified behaviour

more than one possibility (e. g. evaluation of function arguments)

undefined behaviour

everything goes, input program is considered erroneous (e. g.

use-after-free)

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What’s this?

Multiple types of “behaviour”:

implementation-defined behaviour

documented implementation choice (e. g. signedness of char)

unspecified behaviour

more than one possibility (e. g. evaluation of function arguments)

undefined behaviour

everything goes, input program is considered erroneous (e. g.

use-after-free)

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What does this snippet usually print?

(Unoptimized, on a x86 system)

1 uint32_t shifty = 1;

2 shifty = shifty << 32;

3 printf(”%”PRIu32”\n”, shifty);

0 1

neither42

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What does this snippet usually print?

(Unoptimized, on a x86 system)

1 uint32_t shifty = 1;

2 shifty = shifty << 32;

3 printf(”%”PRIu32”\n”, shifty);

0 1

neither42

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Oversized shift amounts

If the value of the right operand is negative or is greater than or

equal to the width of the promoted left operand, the behavior is

undefined.

set variables to zero instead

easily checked when type width is known

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Oversized shift amounts

If the value of the right operand is negative or is greater than or

equal to the width of the promoted left operand, the behavior is

undefined.

set variables to zero instead

easily checked when type width is known

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Oversized shift amounts

If the value of the right operand is negative or is greater than or

equal to the width of the promoted left operand, the behavior is

undefined.

set variables to zero instead

easily checked when type width is known

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What does this snippet usually print when size is INT_MAX?

(Optimized with -O3)

1 int size = ...;

2 if (size > size+1) {

3 puts(”Aborted”)

4 abort();

5 }

6 puts(”Fetching␣memory”);

7 malloc(size+1);

Nothing ”Aborted”

size”Fetching memory”

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What does this snippet usually print when size is INT_MAX?

(Optimized with -O3)

1 int size = ...;

2 if (size > size+1) {

3 puts(”Aborted”)

4 abort();

5 }

6 puts(”Fetching␣memory”);

7 malloc(size+1);

Nothing ”Aborted”

size”Fetching memory”

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Signed integer overflow

unsigned integer overflow is well-defined: UINT_MAX+1 = 0

signed integer overflow is not: INT_MAX+1 = undef

rumours aside INT_MAX+1 is not INT_MIN

Check equality against INT_MAX

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Signed integer overflow

unsigned integer overflow is well-defined: UINT_MAX+1 = 0

signed integer overflow is not: INT_MAX+1 = undef

rumours aside INT_MAX+1 is not INT_MIN

Check equality against INT_MAX

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Signed integer overflow

unsigned integer overflow is well-defined: UINT_MAX+1 = 0

signed integer overflow is not: INT_MAX+1 = undef

rumours aside INT_MAX+1 is not INT_MIN

Check equality against INT_MAX

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Signed integer overflow

unsigned integer overflow is well-defined: UINT_MAX+1 = 0

signed integer overflow is not: INT_MAX+1 = undef

rumours aside INT_MAX+1 is not INT_MIN

Check equality against INT_MAX

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

1 int size = ...;

2 if (size > size+1) {

3 puts(”Aborted”)

4 abort();

5 }

6 puts(”Fetching␣memory”);

7 malloc(size+1);

Only defined behavior is considered

size > size+1 is always false

Optimization removes the branch

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

1 int size = ...;

2 if (size > size+1) {

3 puts(”Aborted”)

4 abort();

5 }

6 puts(”Fetching␣memory”);

7 malloc(size+1);

Only defined behavior is considered

size > size+1 is always false

Optimization removes the branch

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

1 int size = ...;

2 if (size > size+1) {

3 puts(”Aborted”)

4 abort();

5 }

6 puts(”Fetching␣memory”);

7 malloc(size+1);

Only defined behavior is considered

size > size+1 is always false

Optimization removes the branch

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What you already knew

There are other well-known examples:

Dereferencing NULL pointers

Dereferencing wild pointers

Out-of-bound array indices

Use-after-free

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What you already knew

There are other well-known examples:

Dereferencing NULL pointers

Dereferencing wild pointers

Out-of-bound array indices

Use-after-free

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What you already knew

There are other well-known examples:

Dereferencing NULL pointers

Dereferencing wild pointers

Out-of-bound array indices

Use-after-free

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What you already knew

There are other well-known examples:

Dereferencing NULL pointers

Dereferencing wild pointers

Out-of-bound array indices

Use-after-free

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Mitigation

compiler warnings: -Wall

runtime checks: -ftrapv, -fsanitize=undefined and friends

make signed overflow wrap: -fwrapv

static analyzers: e. g. Clang Static Analyzer, (sp)lint

dynamic analyzers: e. g. Valgrind

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Mitigation

compiler warnings: -Wall

runtime checks: -ftrapv, -fsanitize=undefined and friends

make signed overflow wrap: -fwrapv

static analyzers: e. g. Clang Static Analyzer, (sp)lint

dynamic analyzers: e. g. Valgrind

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Mitigation

compiler warnings: -Wall

runtime checks: -ftrapv, -fsanitize=undefined and friends

make signed overflow wrap: -fwrapv

static analyzers: e. g. Clang Static Analyzer, (sp)lint

dynamic analyzers: e. g. Valgrind

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Mitigation

compiler warnings: -Wall

runtime checks: -ftrapv, -fsanitize=undefined and friends

make signed overflow wrap: -fwrapv

static analyzers: e. g. Clang Static Analyzer, (sp)lint

dynamic analyzers: e. g. Valgrind

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Mitigation

compiler warnings: -Wall

runtime checks: -ftrapv, -fsanitize=undefined and friends

make signed overflow wrap: -fwrapv

static analyzers: e. g. Clang Static Analyzer, (sp)lint

dynamic analyzers: e. g. Valgrind

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

1 Undefined behaviour

2 Strict aliasing

3 Arrays

4 Conversions

5 Fun with C99 (and above)

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What does this snippet usually print?

(Optimized, clang or gcc)

1 void f(int *i, float *f) {

2 *i = 42;

3 *f = 13;

4 printf(”%i\n”, *i);

5 }

6 int main(void) {

7 int var;

8 f(&var, &var);

9 return 0;

10 }

42 13

10957619200

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What does this snippet usually print?

(Optimized, clang or gcc)

1 void f(int *i, float *f) {

2 *i = 42;

3 *f = 13;

4 printf(”%i\n”, *i);

5 }

6 int main(void) {

7 int var;

8 f(&var, &var);

9 return 0;

10 }

42 13

10957619200

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

C allows aliasing

int *pa = &a, *pa aliases a

not all expressions may be used to access an object

expression and object type must match

this restriction is commonly called the strict aliasing rule

with a declared as a float, *pa may be neither read nor written

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

C allows aliasing

int *pa = &a, *pa aliases a

not all expressions may be used to access an object

expression and object type must match

this restriction is commonly called the strict aliasing rule

with a declared as a float, *pa may be neither read nor written

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

C allows aliasing

int *pa = &a, *pa aliases a

not all expressions may be used to access an object

expression and object type must match

this restriction is commonly called the strict aliasing rule

with a declared as a float, *pa may be neither read nor written

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

C allows aliasing

int *pa = &a, *pa aliases a

not all expressions may be used to access an object

expression and object type must match

this restriction is commonly called the strict aliasing rule

with a declared as a float, *pa may be neither read nor written

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

C allows aliasing

int *pa = &a, *pa aliases a

not all expressions may be used to access an object

expression and object type must match

this restriction is commonly called the strict aliasing rule

with a declared as a float, *pa may be neither read nor written

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

C allows aliasing

int *pa = &a, *pa aliases a

not all expressions may be used to access an object

expression and object type must match

this restriction is commonly called the strict aliasing rule

with a declared as a float, *pa may be neither read nor written

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Exceptions

different signedness

different qualifiers

struct, array or union type with a member of one of the

aforementioned types

character type

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Exceptions

different signedness

different qualifiers

struct, array or union type with a member of one of the

aforementioned types

character type

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Exceptions

different signedness

different qualifiers

struct, array or union type with a member of one of the

aforementioned types

character type

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Exceptions

different signedness

different qualifiers

struct, array or union type with a member of one of the

aforementioned types

character type

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

1 void func(int *i, float *f) {

2 *i = 5;

3 *f = 42.0f;

4 g(*i);

5 }

potential for constant propagation

if aliasing is desired, the object needs to be in a union with all types

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

1 void func(int *i, float *f) {

2 *i = 5;

3 *f = 42.0f;

4 g(*i);

5 }

potential for constant propagation

if aliasing is desired, the object needs to be in a union with all types

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

1 Undefined behaviour

2 Strict aliasing

3 Arrays

4 Conversions

5 Fun with C99 (and above)

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Consider the declaration char A[2]

What is the type of this expression?

A

array of char char

pointer to charint

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Consider the declaration char A[2]

What is the type of this expression?

A

array of char char

pointer to charint

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Consider the declaration char B[3][5]

What is the type of this expression?

B

array of array of char pointer to array of char

pointer to pointer to chararray of pointer to char

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Consider the declaration char B[3][5]

What is the type of this expression?

B

array of array of char pointer to array of char

pointer to pointer to chararray of pointer to char

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

How do you declare a pointer to an array (3) of int?

int (*C)[3] int *C[3]

int &C[3]int C[][3]

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

How do you declare a pointer to an array (3) of int?

int (*C)[3] int *C[3]

int &C[3]int C[][3]

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Arrays

generally well-understood

confusion about their relation to pointers

Except when it is the operand of the sizeof operator or the

unary & operator, or is a string literal used to initialize an array,

an expression that has type “array of type” is converted to an

expression with type “pointer to type” that points to the initial

element of the array object and is not an lvalue.

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Arrays

generally well-understood

confusion about their relation to pointers

Except when it is the operand of the sizeof operator or the

unary & operator, or is a string literal used to initialize an array,

an expression that has type “array of type” is converted to an

expression with type “pointer to type” that points to the initial

element of the array object and is not an lvalue.

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Arrays

generally well-understood

confusion about their relation to pointers

Except when it is the operand of the sizeof operator or the

unary & operator, or is a string literal used to initialize an array,

an expression that has type “array of type” is converted to an

expression with type “pointer to type” that points to the initial

element of the array object and is not an lvalue.

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

So it is basically a char**, right?

1 char B[3][5] = {”Word”, ”CCCC”, ”axes”};

2 char **Bp = B;

warning: initialization from incompatible pointer type

“pointer to array of char” and “pointer to pointer to char” is not the

same thing

char (*Bp)[5]

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

So it is basically a char**, right?

1 char B[3][5] = {”Word”, ”CCCC”, ”axes”};

2 char **Bp = B;

warning: initialization from incompatible pointer type

“pointer to array of char” and “pointer to pointer to char” is not the

same thing

char (*Bp)[5]

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

So it is basically a char**, right?

1 char B[3][5] = {”Word”, ”CCCC”, ”axes”};

2 char **Bp = B;

warning: initialization from incompatible pointer type

“pointer to array of char” and “pointer to pointer to char” is not the

same thing

char (*Bp)[5]

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

And if I just cast it?

1 char B[3][5] = {”Welt”, ”Keks”, ”axes”};

2 char **Bp = (char*[3]){”Welt”, ”Keks”, ”axes”};

’W’ ’e’ ’l’ ’t’ ’\0’

’K’ ’e’ ’k’ ’s’ ’\0’

’a’ ’x’ ’e’ ’s’ ’\0’

B:

Bp:

’W’ ’e’ ’l’ ’t’ ’\0’

’K’ ’e’ ’k’ ’s’ ’\0’

’a’ ’x’ ’e’ ’s’ ’\0’

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Consider the declaration char B[3][5]

How many Bytes after the start of B does the following expression read?

B + 1

1 5

310

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Consider the declaration char B[3][5]

How many Bytes after the start of B does the following expression read?

B + 1

1 5

310

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

1 Undefined behaviour

2 Strict aliasing

3 Arrays

4 Conversions

5 Fun with C99 (and above)

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What does this snippet usually print?

(Optimized, clang or gcc)

1 signed int s = -1;

2 unsigned int u = 1;

3 if (s < u)

4 puts(”True”);

5 else

6 puts(”False”);

”True” Nothing

”Trlse””False”

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What does this snippet usually print?

(Optimized, clang or gcc)

1 signed int s = -1;

2 unsigned int u = 1;

3 if (s < u)

4 puts(”True”);

5 else

6 puts(”False”);

”True” Nothing

”Trlse””False”

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What does this snippet print?

1 unsigned int u = 1;

2 signed int s1 = -2;

3 signed int s2 = u + s1;

4 printf(”%i\n”, s2);

-1 0

14294967295

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

What does this snippet print?

1 unsigned int u = 1;

2 signed int s1 = -2;

3 signed int s2 = u + s1;

4 printf(”%i\n”, s2);

-1 0

14294967295

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Integer conversion ranks

Used to determine which integer type to convert to

No fixed mapping

Roughly: larger range of values ⇒ higher rank

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Integer promotions

Only applied to expressions with integer type of rank lower than

(unsigned)int

Converted to int, if representable by that

Otherwise, converted to unsigned int

Applied for:

usual arithmetic conversions
default argument promotions
operand of unary +, - and ~ operators
both operands of the shift operators

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Integer promotions

Only applied to expressions with integer type of rank lower than

(unsigned)int

Converted to int, if representable by that

Otherwise, converted to unsigned int

Applied for:

usual arithmetic conversions
default argument promotions
operand of unary +, - and ~ operators
both operands of the shift operators

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Integer promotions

Only applied to expressions with integer type of rank lower than

(unsigned)int

Converted to int, if representable by that

Otherwise, converted to unsigned int

Applied for:

usual arithmetic conversions
default argument promotions
operand of unary +, - and ~ operators
both operands of the shift operators

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Integer promotions

Only applied to expressions with integer type of rank lower than

(unsigned)int

Converted to int, if representable by that

Otherwise, converted to unsigned int

Applied for:

usual arithmetic conversions
default argument promotions
operand of unary +, - and ~ operators
both operands of the shift operators

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Integer promotions

Only applied to expressions with integer type of rank lower than

(unsigned)int

Converted to int, if representable by that

Otherwise, converted to unsigned int

Applied for:

usual arithmetic conversions
default argument promotions
operand of unary +, - and ~ operators
both operands of the shift operators

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Integer promotions

Only applied to expressions with integer type of rank lower than

(unsigned)int

Converted to int, if representable by that

Otherwise, converted to unsigned int

Applied for:

usual arithmetic conversions
default argument promotions
operand of unary +, - and ~ operators
both operands of the shift operators

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Integer promotions

Only applied to expressions with integer type of rank lower than

(unsigned)int

Converted to int, if representable by that

Otherwise, converted to unsigned int

Applied for:

usual arithmetic conversions
default argument promotions
operand of unary +, - and ~ operators
both operands of the shift operators

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Integer promotions

Only applied to expressions with integer type of rank lower than

(unsigned)int

Converted to int, if representable by that

Otherwise, converted to unsigned int

Applied for:

usual arithmetic conversions
default argument promotions
operand of unary +, - and ~ operators
both operands of the shift operators

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Default argument promotions

Applied to arguments if no type for the corresponding parameter is

specified

1 Apply integer promotions

2 Convert floats to doubles

void f(); // Arbitrary number of parameters

void g(void); // No parameters

int printf(char const *format, ...); // Variadic

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Default argument promotions

Applied to arguments if no type for the corresponding parameter is

specified

1 Apply integer promotions

2 Convert floats to doubles

void f(); // Arbitrary number of parameters

void g(void); // No parameters

int printf(char const *format, ...); // Variadic

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Default argument promotions

Applied to arguments if no type for the corresponding parameter is

specified

1 Apply integer promotions

2 Convert floats to doubles

void f(); // Arbitrary number of parameters

void g(void); // No parameters

int printf(char const *format, ...); // Variadic

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Usual arithmetic conversions

Applied for certain operations:

multiplicative (*, /, %)

additive (+, -)

relational (<, >, <=, >=)

equality (==, !=)

bitwise (&, |, ^)

conditional (a ? b : c, only to the second and third operand)

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Usual arithmetic conversions

1 If one operand’s type is long double, the other is converted to

long double

2 Otherwise, if one operand’s type is double, the other is converted to

double

3 Otherwise, if one operand’s type is float, the other is converted to

float

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Usual arithmetic conversions

4 Otherwise, the integer promotions are performed on both operands.

If the types are equal after this the conversion is finished

5 Otherwise, if both operands have the same signedness, the operand

with the type of lesser integer conversion rank is converted to the

type of the other operand

6 Otherwise, if the operand with unsigned integer type has a type with

greater rank than the signed operand, the signed operand is

converted to the type of the unsigned operand

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Usual arithmetic conversions

7 Otherwise, if the type of the operand with signed integer type can

represent all values of the type of the operand with unsigned

integer type, the operand with unsigned integer type is converted to

the type of the operand with signed integer type

8 Otherwise, both operands are converted to the unsigned integer

type corresponding to the type of the operand with signed integer

type

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Usual arithmetic conversions - Example

1 unsigned int a = 1;

2 signed int b = -1, c = a + b;

3 if (a > b) printf(”True\n”);

a and b have the same rank

For both + and >, b is converted to unsigned int

Effect: a > b is false

a+ bsigned ≡ a+ bunsigned (mod (UINT_MAX+ 1)), hence a + b is 0

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Usual arithmetic conversions - Example

1 unsigned int a = 1;

2 signed int b = -1, c = a + b;

3 if (a > b) printf(”True\n”);

a and b have the same rank

For both + and >, b is converted to unsigned int

Effect: a > b is false

a+ bsigned ≡ a+ bunsigned (mod (UINT_MAX+ 1)), hence a + b is 0

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Usual arithmetic conversions - Example

1 unsigned int a = 1;

2 signed int b = -1, c = a + b;

3 if (a > b) printf(”True\n”);

a and b have the same rank

For both + and >, b is converted to unsigned int

Effect: a > b is false

a+ bsigned ≡ a+ bunsigned (mod (UINT_MAX+ 1)), hence a + b is 0

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Usual arithmetic conversions - Example

1 unsigned int a = 1;

2 signed int b = -1, c = a + b;

3 if (a > b) printf(”True\n”);

a and b have the same rank

For both + and >, b is converted to unsigned int

Effect: a > b is false

a+ bsigned ≡ a+ bunsigned (mod (UINT_MAX+ 1)), hence a + b is 0

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

1 Undefined behaviour

2 Strict aliasing

3 Arrays

4 Conversions

5 Fun with C99 (and above)

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

How many possible results does this function have?

1 int f(signed int *i1, unsigned int *i2, float *f, char *c) {

2 *i1 = 42;

3 *i2 = 43;

4 *f = 13.;

5 *c = 1;

6 return *i1 + *i2 + *f + *c;

7 }

19 1

2142104

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

How many possible results does this function have?

1 int f(signed int *i1, unsigned int *i2, float *f, char *c) {

2 *i1 = 42;

3 *i2 = 43;

4 *f = 13.;

5 *c = 1;

6 return *i1 + *i2 + *f + *c;

7 }

19 1

2142104

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

1 int f(signed int *i1,

2 unsigned int *i2,

3 float *f,

4 char *c) {

5 *i1 = 42;

6 *i2 = 43;

7 *f = 13.;

8 *c = 1;

9 return *i1 + *i2 + *f + *c;

10 }

1 .LCPI0_0:

2 .long 1065353216 # float 1

3 f:

4 movl $42, (%rdi)

5 movl $43, (%rsi)

6 movl $1095761920, (%rdx)

7 movb $1, (%rcx)

8 movl (%rsi), %eax

9 addl (%rdi), %eax

10 cvtsi2ssq %rax, %xmm0

11 addss (%rdx), %xmm0

12 addss .LCPI0_0(%rip), %xmm0

13 cvttss2si %xmm0, %eax

14 retq

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

restrict

C99 added the restrict qualifier

can only be applied to pointer types

the pointee may only be accessed via an expression based on the

pointer

restricts aliasing

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

restrict

C99 added the restrict qualifier

can only be applied to pointer types

the pointee may only be accessed via an expression based on the

pointer

restricts aliasing

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

restrict

C99 added the restrict qualifier

can only be applied to pointer types

the pointee may only be accessed via an expression based on the

pointer

restricts aliasing

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

restrict

C99 added the restrict qualifier

can only be applied to pointer types

the pointee may only be accessed via an expression based on the

pointer

restricts aliasing

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

1 int f(signed int *restrict i1,

2 unsigned int *restrict i2,

3 float *restrict f,

4 char *restrict c) {

5 *i1 = 42;

6 *i2 = 43;

7 *f = 13.;

8 *c = 1;

9 return *i1 + *i2 + *f + *c;

10 }

1 f:

2 movl $42, (%rdi)

3 movl $43, (%rsi)

4 movl $1095761920, (%rdx)

5 movb $1, (%rcx)

6 movl $99, %eax

7 retq

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Compound literals

Anonymous objects in C

Look like casting an initializer: int *A = (int[3]){42, 3, 5}

Are L-values: (char){’a’} = ’b’

1 GPIO_Init(GPIOD, &(GPIO_InitTypeDef){

2 .GPIO_Pin = GPIO_Pin_4,

3 .GPIO_Mode = GPIO_Mode_OUT,

4 .GPIO_OType = GPIO_OType_PP,

5 .GPIO_PuPd = GPIO_PuPd_NOPULL,

6 .GPIO_Speed = GPIO_Speed_50MHz

7 });

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Compound literals

Anonymous objects in C

Look like casting an initializer: int *A = (int[3]){42, 3, 5}

Are L-values: (char){’a’} = ’b’

1 GPIO_Init(GPIOD, &(GPIO_InitTypeDef){

2 .GPIO_Pin = GPIO_Pin_4,

3 .GPIO_Mode = GPIO_Mode_OUT,

4 .GPIO_OType = GPIO_OType_PP,

5 .GPIO_PuPd = GPIO_PuPd_NOPULL,

6 .GPIO_Speed = GPIO_Speed_50MHz

7 });

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Compound literals

Anonymous objects in C

Look like casting an initializer: int *A = (int[3]){42, 3, 5}

Are L-values: (char){’a’} = ’b’

1 GPIO_Init(GPIOD, &(GPIO_InitTypeDef){

2 .GPIO_Pin = GPIO_Pin_4,

3 .GPIO_Mode = GPIO_Mode_OUT,

4 .GPIO_OType = GPIO_OType_PP,

5 .GPIO_PuPd = GPIO_PuPd_NOPULL,

6 .GPIO_Speed = GPIO_Speed_50MHz

7 });

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Compound literals

Anonymous objects in C

Look like casting an initializer: int *A = (int[3]){42, 3, 5}

Are L-values: (char){’a’} = ’b’

1 GPIO_Init(GPIOD, &(GPIO_InitTypeDef){

2 .GPIO_Pin = GPIO_Pin_4,

3 .GPIO_Mode = GPIO_Mode_OUT,

4 .GPIO_OType = GPIO_OType_PP,

5 .GPIO_PuPd = GPIO_PuPd_NOPULL,

6 .GPIO_Speed = GPIO_Speed_50MHz

7 });

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Booleans

A real boolean type called _Bool exists

Easy usage using stdbool.h

Typedef called bool

Constants true and false

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Booleans

A real boolean type called _Bool exists

Easy usage using stdbool.h

Typedef called bool

Constants true and false

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Booleans

A real boolean type called _Bool exists

Easy usage using stdbool.h

Typedef called bool

Constants true and false

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Booleans

A real boolean type called _Bool exists

Easy usage using stdbool.h

Typedef called bool

Constants true and false

Undefined behaviour Strict aliasing Arrays Conversions Fun with C99 (and above)

Thank you for your attention.
Any questions?

http://babelmonkeys.de/~florob/talks/AC-2015-03-25-undefC.pdf

http://babelmonkeys.de/~florob/talks/AC-2015-03-25-undefC.pdf
http://babelmonkeys.de/~florob/talks/AC-2015-03-25-undefC.pdf

	Undefined behaviour
	Strict aliasing
	Arrays
	Conversions
	Fun with C99 (and above)

