
Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Caches and You

Florian “Florob” Zeitz

2018-03-12

1 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Two hard problems in computer science

1

Naming things

2

Cache invalidation
3 Off by one errors

2 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Two hard problems in computer science

1 Naming things
2

Cache invalidation
3 Off by one errors

2 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Two hard problems in computer science

1 Naming things
2 Cache invalidation

3 Off by one errors

2 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Two hard problems in computer science

1 Naming things
2 Cache invalidation
3 Off by one errors

2 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

1 Caches 101

2 Caches and performance

3 Rust data structures

3 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

1 Caches 101

2 Caches and performance

3 Rust data structures

4 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Introduction

Problem:
RAM access is very slow
modern CPUs are very fast
a lot of time is spend waiting for memory

Solution: cache memory in fast on-die memory
usually two to three levels of cache

5 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Cache levels

sm
alle

r slower

RAM
L3
L2
L1

Core 0
regs

Core 1
regs

Core 2
regs

Core 3
regs

L1 L1 L1 L1
L2 L2 L2 L2

L3
RAM

L1 cache per core, separate caches for instructions and data
L2 cache per core, shared for instructions and data
L3 cache shared among cores, shared for instructions and data,
doesn’t always exist

6 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Cacheline

granularity of data transfered between memory and caches is fixed
fetching data always fetches the whole cacheline
invalidating data always invalidates the whole cacheline

7 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Cache invalidation

modern caches are usually coherent
data is held consistent between per core caches
writing a cacheline on one core invalidates it on all others
inclusive caching: removing a cacheline from an outer cache level
removes it from all inner caches

8 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Intel Skylake characteristics

L1 Data Cache: 32 KiB
L1 Instruction Cache: 32 KiB
L2 Cache: 256 KiB
L3 Cache: 8 MiB
Cacheline: 64 B

L1 Data Cache Latency: ∼1 ns
L2 Cache Latency: ∼3 ns
L3 Cache Latency: ∼10 ns
RAM Latency: ∼60 ns

9 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Prefetching

linear reads are detected
forward reads fetch the following cacheline(s)
backwards reads fetch the preceding cacheline(s)

10 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

1 Caches 101

2 Caches and performance

3 Rust data structures

11 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Matrix multiplication

1 fn mul(a: &[[u32; DIM]], b: &[[u32; DIM]]) -> Vec<[u32; DIM]> {
2 let mut result = vec![[0; DIM]; DIM];
3 for (i, row) in result.iter_mut().enumerate() {
4 for (j, cell) in row.iter_mut().enumerate() {
5 for k in 0..DIM {
6 *cell += a[i][k] * b[k][j];
7 }
8 }
9 }

10 result
11 }

goes through a linearly in row major order
goes through b with gaps in column major order

12 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Matrix multiplication, B transposed

1 fn mul_t(a: &[[u32; DIM]], b: &[[u32; DIM]]) -> Vec<[u32; DIM]> {
2 let mut result = vec![[0; DIM]; DIM];
3 for (i, row) in result.iter_mut().enumerate() {
4 for (j, cell) in row.iter_mut().enumerate() {
5 for k in 0..DIM {
6 *cell += a[i][k] * b[j][k];
7 }
8 }
9 }

10 result
11 }

goes through a and b linearly in row major order
approximately 9 times faster (DIM = 1024 Intel Core i7-3720QM)

13 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Matrix multiplication

CPUs are very good at linear reads
data storage is important
avoid skipping large chunks of data
note: Vec<[u32; DIM]> not Vec<Vec<u32>>

14 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Working on live objects

1 struct Object {
2 is_live: bool,
3 id: u64,
4 name: String,
5 position: (f64, f64),
6 velocity: (f64, f64),
7 }

8 fn main() {
9 let objs = ...;

10

11 for obj in &objects {
12 if obj.is_live {
13 do_work(obj)
14 }
15 }
16 }

each objects is larger than a cacheline
each check for liveness fetches a new cacheline
linear traversal, but fetches a lot of unneeded data, if most objects
are not live

15 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Working on live objects

data locality is important
bad performance if loops act on one/few fields of an object
alternative: use separate vectors for data often traversed
alternative: convert Array of Structs (AoS) to Struct of Arrays (SoA)
may be done as a compiler optimization (rarely)

16 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Code size

hot code should ideally fit into L1 cache
calling a cached function may be better than running uncached
straight-line code
inlining blows up code size/duplicates code
(#[inline(never)])
specialization creates multiple versions of code
(consider passing &Trait)
always measure

17 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

False sharing

1 fn increment(i: usize, j: usize) {
2 let x: Arc<[AtomicUsize; 16]> = ...;
3

4 let xp = x.clone();
5 thread::spawn(move || {
6 for _ in 0..100_000_000 {
7 xp[i].fetch_add(1, Ordering::Relaxed);
8 }
9 });

10 for _ in 0..100_000_000 {
11 x[j].fetch_add(1, Ordering::Relaxed);
12 }
13 }

increment(0, 1) takes about 6 times longer than increment(0, 7)

18 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

False sharing

Thread A: reads memory
Thread B writes (near) it, causing cache misses in Thread A
conditions:

values on same cacheline
access by different cores
frequent access
at least one writer

19 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

1 Caches 101

2 Caches and performance

3 Rust data structures

20 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Vec is bae

one contiguous (heap) allocation
fast iteration
often outperforms other data structures at their speciality, up to a
certain size

21 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

LinkedList is meh

one heap allocation per element
expensive iteration (pointer chasing, many cache misses)
insertion?
append() (joining lists) is cheap
push_front() and push_back() are cheap
but if you need the latter two…

22 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

VecDeque

growable ring buffer
one contiguous (heap) allocation
fast iteration
fast push_front() and push_back()

23 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

HashMap

linear probing and Robin Hood bucket stealing
unlike in other languages fairly cache efficient
values with same hash value are adjacent
fast iteration

24 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

BTreeMap

binary tree
groups multiple items in a node
better cache efficiency than a regular binary tree

25 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Summary

caches are good with temporal and spacial locality
try to keep the working set small (instructions and memory)
use Vec

26 / 27

Caches and
You

Florob

Caches 101

Caches and
performance

Rust data
structures

Questions

Thank you for your attention.
Any questions?

https://babelmonkeys.de/~florob/talks/RC-2018-03-12-caches-and-you.pdf

27 / 27

https://babelmonkeys.de/~florob/talks/RC-2018-03-12-caches-and-you.pdf
https://babelmonkeys.de/~florob/talks/RC-2018-03-12-caches-and-you.pdf

	Caches 101
	Caches and performance
	Rust data structures
	Questions

