
DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

DSTs

Florian “Florob” Zeitz

2019-04-03

1 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

1 Last Time

2 The Problem

3 The Solution: DSTs

4 Last Time 2

2 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

1 Last Time

2 The Problem

3 The Solution: DSTs

4 Last Time 2

3 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

Last time’s discussion

Can you resize the object behind a Box<[u8]>

Different from assigning a different Box<[u8]> to the same binding
Maybe std::mem::replace(&mut *the_box, [1, 2, 3, 4][..])?

4 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

1 Last Time

2 The Problem

3 The Solution: DSTs

4 Last Time 2

5 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

When Size Doesn’t Matter

Most types have a size known at compile time
We can store them on the stack, pass them to functiions, etc.
Sometimes we want to pass something we don’t know the size of

array of arbitrary size
part of an array/vector
implementer of a Trait (without generics)

6 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

Regular Structs

1 struct Slice<'a, T> {
2 ptr: *const T,
3 len: usize,
4 _phantom: PhantomData<&'a T>,
5 }

Can point to an array of any length, or slice thereof
Done, right?

What about mutably borrowing from this type?
Well, what if we want to pass ownership?

7 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

Regular Structs

1 struct Slice<'a, T> {
2 ptr: *const T,
3 len: usize,
4 _phantom: PhantomData<&'a T>,
5 }

Can point to an array of any length, or slice thereof
Done, right?
What about mutably borrowing from this type?

Well, what if we want to pass ownership?

7 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

Regular Structs

1 struct Slice<'a, T> {
2 ptr: *const T,
3 len: usize,
4 _phantom: PhantomData<&'a T>,
5 }

Can point to an array of any length, or slice thereof
Done, right?
What about mutably borrowing from this type?
Well, what if we want to pass ownership?

7 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

More Structs

1 struct SliceMut<'a, T> {
2 ptr: *mut T,
3 len: usize,
4 _phantom: PhantomData<&'a T>,
5 }
6

7 struct BoxStruct<T> { ... }
8

9 struct RcStruct<T> { ... }
10

11 struct ArcStruct<T> { ... }

This is not composable
And therefore doesn’t scale well

8 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

1 Last Time

2 The Problem

3 The Solution: DSTs

4 Last Time 2

9 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

What are DSTs

Rust provides two build in types to solve this problem
[T]
dyn Trait (formerly Trait)

Size of both is unknown at compile time
They can’t stand on their own as a variable or argument type

10 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

DSTs as Existential Types

[T] is an existential array type: ∃ n. [T; n]

dyn Trait is an existential value type: ∃ T. T: Trait

11 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

Unsizing

As one of its few coercions Rust does unsizing:
[T; n] to [T]
T implementing Trait to dyn Trait

This allows:
&[T; 4] → &[T]
Box<[T; 4]> → Box<[T]>
Rc<[T; 4]> → Rc<[T]>

These pointers to DSTs have an additional word:
For [T] the length
For dyn Trait a pointer to the vtable

12 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

DSTs in Structs

DSTs can occur in structs
This makes the struct a DST too
Only as the last field
You can only create them via unsizing and via generics

13 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

DSTs and Traits and Generics

All regular types automatically implement the Sized trait
All generics are per default bound by the Sized trait
You need to opt out of this default by requiring (allowing) ?Sized

1 struct Foo<T: ?Sized> {
2 foo: u16,
3 bar: T
4 }
5

6 let x: &Foo<[u8]> = &Foo { foo: 12, bar: [0; 4] };

14 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

1 Last Time

2 The Problem

3 The Solution: DSTs

4 Last Time 2

15 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

Last time’s discussion

Can you resize the object behind a Box<[u8]>

Different from assigning a different Box<[u8]> to the same binding
Maybe std::mem::replace(&mut *the_box, [1, 2, 3, 4][..])?

pub fn replace<T>(dest: &mut T, src: T) -> T

There is an implicit Sized bound

16 / 17



DSTs

Florob

Last Time

The Problem

The Solution:
DSTs

Last Time 2

Questions

Thank you for your attention.
Any questions?

https://babelmonkeys.de/~florob/talks/RC-2019-04-03-dsts.pdf

17 / 17

https://babelmonkeys.de/~florob/talks/RC-2019-04-03-dsts.pdf
https://babelmonkeys.de/~florob/talks/RC-2019-04-03-dsts.pdf

	Last Time
	The Problem
	The Solution: DSTs
	Last Time 2
	Questions

