
Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Rust’s Ownership Model

Florian “Florob” Zeitz

2020-02-05

1 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

1 Motivation

2 Ownership

3 Lifetimes

4 Rust against our Motivations

2 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

1 Motivation

2 Ownership

3 Lifetimes

4 Rust against our Motivations

3 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

C++: Realloc

1 #include <iostream>
2 #include <vector>
3 #include <string>
4

5 int main() {
6 std::vector<std::string> v;
7

8 v.emplace_back("Foo");
9 std::cout << "Capacity: " << v.capacity() << '\n';
10 auto const &x = v[0];
11 v.emplace_back("Bar");
12 std::cout << x << '\n';
13

14 return 0;
15 }

4 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

C++: Realloc

1 $ clang++ -std=c++17 -Wall vector.cc -o vector-cc
2 $./vector-cc
3 Capacity: 1
4 zsh: segmentation fault (core dumped) ./vector-cc

5 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

C++: Iterator Invalidation
1 #include <iostream>
2 #include <string>
3 #include <vector>
4

5 int main() {
6 std::vector<std::string> v = { "F", "o", "o" };
7

8 for (auto const &it : v) {
9 v.push_back(it + it);
10 }
11 for (auto const &it : v) {
12 std::cout << it << '\n';
13 }
14

15 return 0;
16 }

6 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

C++: Iterator Invalidation

1 $ clang++ -std=c++17 -Wall iter.cc -o iter-cc
2 $./iter-cc
3 F
4 o
5 o
6 FF
7

8

9 $

7 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

C++: Use After Free
1 #include <iostream>
2

3 int& f() {
4 int i = 42;
5 return i;
6 }
7

8 void print(int &x) {
9 std::cout << x << '\n';
10 }
11

12 int main() {
13 int &i = f();
14 print(i);
15 return 0;
16 }

8 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

C++: Use After Free

1 $ clang++ -Wall after-free.cc -o after-free
2 after-free.cc:5:16: warning: reference to stack memory

associated with local variable 'i' returned
[-Wreturn-stack-address]

↪→

↪→

3 return i;
4 ^
5 1 warning generated.
6 $./after-free
7 32766
8 $

9 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Example: Calculating π

π = 4arctan(1)

=

1∫
0

4

1 + x2
dx

Calculate π by Riemann
integration
approximate the area by thin
rectangles
embarrassingly parallel 0.0

2.0

4.0

1.0

10 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

C++: Data Race

1 #include <cstdint>
2 #include <iostream>
3 #include <thread>
4 #include <vector>
5

6 int main() {
7 constexpr uint64_t NUM_THREADS = 4;
8 constexpr uint64_t NUM_STEPS = 100000;
9 constexpr uint64_t THREAD_STEPS = NUM_STEPS / NUM_THREADS;
10 constexpr double STEP = 1.0 / NUM_STEPS;
11

11 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

C++: Data Race

12 double pi = 0;
13

14 std::vector<std::thread> threads;
15

16 for (int i = 0; i < NUM_THREADS; ++i) {
17 uint64_t lower = THREAD_STEPS * i;
18 uint64_t upper = THREAD_STEPS * (i+1);
19 threads.emplace_back([=, &pi]() {
20 for (uint64_t j = lower; j < upper; ++j) {
21 double x = (j + 0.5) * STEP;
22 pi += 4.0/(1.0 + x*x) * STEP;
23 }
24 });
25 }

12 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

C++: Data Race

26

27 for (auto &t : threads) t.join();
28

29 std::cout.precision(10);
30 std::cout << "Pi = " << pi << '\n';
31

32 return 0;
33 }

13 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

C++: Data Race

1 $ clang++ -std=c++17 -lpthread -Wall pi.cc -o pi-cc
2 $./pi-cc
3 Pi = 1.156130797
4 $./pi-cc
5 Pi = 1.099799814

classical data race
Thread A liest pi = 0.1423

Thread B liest pi = 0.1423

Thread A schreibt pi = 0.7609

Thread B schreibt pi = 0.5768

pi = 0.5768, Thread As Berechnung ist verloren

14 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Observation

Problems arise when combining:

Mutability + Aliasing

v.emplace_back(...) auto const &x = v[0]
v.push_back(...) auto const &it : v

15 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

1 Motivation

2 Ownership

3 Lifetimes

4 Rust against our Motivations

16 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

You might have heard

Rust has a linear type system
i.e. each value may only be used once
Rust has an affine type system
i.e. each value may be used at most once
Rust is related to quantitative type theory
i.e. values track how often they may be used as type state

17 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Ownership: Bindings

1 struct Crop;
2

3 fn main() {
4 let c = Crop;
5

6 let _grinder1 = c; // moves c to _grinder1
7

8 let _grinder2 = c; // error: use of moved value: `c`
9 }

18 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Ownership: Functions

1 struct Crop;
2 struct Flour;
3

4 fn grind(_c: Crop) -> Flour {
5 Flour
6 // _c is freed here
7 }
8

9 fn main() {
10 let c = Crop;
11

12 grind(c); // c moves into `grind()`
13 grind(c); // error: use of moved value: `c`
14 }

19 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Returning Ownership

1 struct Book { page: u32 }
2

3 fn read(b: Book) -> Book {
4 println!("I read page {}", b.page);
5 b
6 }
7

8 fn main() {
9 let b = Book { page: 1 };
10 let b1 = read(b); // b moves into `read()`
11 // let b2 = read(b); // error: use of moved value: `b`
12 let _b2 = read(b1);
13 }

20 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Returning Ownership (Mutable)

8 fn turn_page(mut b: Book) -> Book {
9 b.page += 1;
10 b
11 }
12

13 fn main() {
14 let b = Book { page: 1 };
15

16 let b1 = read(b);
17 let b2 = turn_page(b1);
18 let _b3 = read(b2);
19 }

21 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Shared Borrow

1 struct Book { page: u32 }
2

3 fn read(b: &Book) {
4 println!("I read page {}", b.page);
5 }
6

7 fn main() {
8 let b = Book { page: 1 };
9 let l = &b;
10

11 read(&b);
12 read(l);
13 read(&b);
14 }

22 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Mutable Borrow

7 fn turn_page(b: &mut Book) { b.page += 1; }
8

9 fn main() {
10 let mut b = Book { page: 1 };
11

12 read(&b);
13 turn_page(&mut b);
14 read(&b);
15

16 let l = &b;
17 // turn_page(&mut b); // error: cannot borrow `b` as
18 // mutable because it is also
19 // borrowed as immutable
20 read(l);
21 }

23 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Intermission: Copy Types

1 struct Dress;
2 #[derive(Copy, Clone)]
3 struct Mp3;
4

5 fn main() {
6 let shop_dress = Dress;
7 let _your_dress = shop_dress;
8 let _their_dress = shop_dress; // error:
9 // use of moved value:
10 // `shop_dress`
11

12 let shop_mp3 = Mp3;
13 let _your_mp3 = shop_mp3;
14 let _their_mp3 = shop_mp3; // This is fine
15 }

24 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

1 Motivation

2 Ownership

3 Lifetimes

4 Rust against our Motivations

25 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Basic lifetimes

1 fn main() {
2 let r;
3

4 {
5 let x = 5;
6 r = &x; // error: `x` does not live long enough
7 }
8

9 println!("r: {}", r);
10 }

26 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Basic lifetimes

1 fn main() {
2 let r; // --------+-- 'a
3 // |
4 { // |
5 let x = 5; // -+-- 'b |
6 r = &x; // | |
7 } // -+ |
8 // |
9 println!("r: {}", r); // |
10 } // --------+

xmust live until the last use of r

27 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Returning References

1 struct Page;
2 struct Book {
3 page: u32,
4 content: Vec<Page>,
5 }
6

7 fn get_page<'a>(b: &'a Book, page: usize) -> &'a Page {
8 &b.content[page]
9 }

28 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Multiple Input Lifetimes

1 struct Book { page: u32 }
2

3 fn longer<'a>(a: &'a Book, b: &'a Book) -> &'a Book {
4 if a.page > b.page {
5 a
6 } else {
7 b
8 }
9 }

29 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Lifetime Elision

1 struct Page;
2 struct Book {
3 page: u32,
4 content: Vec<Page>,
5 }
6

7 fn get_page(b: &Book, page: usize) -> &Page {
8 &b.content[page]
9 }

if there is only one input lifetime all outputs get it
in methods all outputs get self’s lifetime

30 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

1 Motivation

2 Ownership

3 Lifetimes

4 Rust against our Motivations

31 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Rust: Realloc

1 fn main() {
2 let mut v: Vec<String> = Vec::new();
3

4 v.push("Foo".to_string());
5 let x: &String = &v[0];
6 v.push("Bar".to_string());
7

8 println!("{}", x);
9 }

32 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Rust: Realloc

1 $ rustc vector.rs
2 error[E0502]: cannot borrow `v` as mutable because it is also

borrowed as immutable↪→

3 --> vector.rs:6:5
4 |
5 5 | let x: &String = &v[0];
6 | - immutable borrow occurs here
7 6 | v.push("Bar".to_string());
8 | ^^^^^^^^^^^^^^^^^^^^^^^^^ mutable borrow occurs here
9 7 |
10 8 | println!("{}", x);
11 | - immutable borrow later used here
12
13 error: aborting due to previous error
14
15 For more information about this error, try `rustc --explain E0502`.

33 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Rust: Iterator Invalidation

1 fn main() {
2 let mut v: Vec<String> = vec!["F".into(), "o".into(),
3 "o".into()];
4

5 for it in &v {
6 v.push(it.clone() + &it);
7 }
8 for it in &v {
9 println!("{}", it);
10 }
11 }

34 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Rust: Iterator Invalidation

1 $ rustc iter.rs
2 error[E0502]: cannot borrow `v` as mutable because it is also

borrowed as immutable↪→

3 --> iter.rs:6:9
4 |
5 5 | for it in &v {
6 | --
7 | |
8 | immutable borrow occurs here
9 | immutable borrow later used here
10 6 | v.push(it.clone() + &it);
11 | ^^^^^^^^^^^^^^^^^^^^^^^^ mutable borrow occurs here
12
13 error: aborting due to previous error
14
15 For more information about this error, try `rustc --explain E0502`.

35 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Calculating π

Lifecoding

36 / 37

Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Thank you for your attention.
Any questions?

https://babelmonkeys.de/~florob/talks/RC-2020-02-05-rust-ownership.pdf

37 / 37

https://babelmonkeys.de/~florob/talks/RC-2020-02-05-rust-ownership.pdf
https://babelmonkeys.de/~florob/talks/RC-2020-02-05-rust-ownership.pdf

	Motivation
	Ownership
	Lifetimes
	Rust against our Motivations
	Questions

