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C++: Realloc

1 #include <iostream>
2 #include <vector>
3 #include <string>
4

5 int main() {
6 std::vector<std::string> v;
7

8 v.emplace_back("Foo");
9 std::cout << "Capacity: " << v.capacity() << '\n';
10 auto const &x = v[0];
11 v.emplace_back("Bar");
12 std::cout << x << '\n';
13

14 return 0;
15 }
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C++: Realloc

1 $ clang++ -std=c++17 -Wall vector.cc -o vector-cc
2 $ ./vector-cc
3 Capacity: 1
4 zsh: segmentation fault (core dumped) ./vector-cc
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C++: Iterator Invalidation
1 #include <iostream>
2 #include <string>
3 #include <vector>
4

5 int main() {
6 std::vector<std::string> v = { "F", "o", "o" };
7

8 for (auto const &it : v) {
9 v.push_back(it + it);
10 }
11 for (auto const &it : v) {
12 std::cout << it << '\n';
13 }
14

15 return 0;
16 }

6 / 37



Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

C++: Iterator Invalidation

1 $ clang++ -std=c++17 -Wall iter.cc -o iter-cc
2 $ ./iter-cc
3 F
4 o
5 o
6 FF
7

8

9 $
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C++: Use After Free
1 #include <iostream>
2

3 int& f() {
4 int i = 42;
5 return i;
6 }
7

8 void print(int &x) {
9 std::cout << x << '\n';
10 }
11

12 int main() {
13 int &i = f();
14 print(i);
15 return 0;
16 }
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C++: Use After Free

1 $ clang++ -Wall after-free.cc -o after-free
2 after-free.cc:5:16: warning: reference to stack memory

associated with local variable 'i' returned
[-Wreturn-stack-address]

↪→

↪→

3 return i;
4 ^
5 1 warning generated.
6 $ ./after-free
7 32766
8 $
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Example: Calculating π

π = 4arctan(1)

=

1∫
0

4

1 + x2
dx

Calculate π by Riemann
integration
approximate the area by thin
rectangles
embarrassingly parallel 0.0

2.0

4.0

1.0
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C++: Data Race

1 #include <cstdint>
2 #include <iostream>
3 #include <thread>
4 #include <vector>
5

6 int main() {
7 constexpr uint64_t NUM_THREADS = 4;
8 constexpr uint64_t NUM_STEPS = 100000;
9 constexpr uint64_t THREAD_STEPS = NUM_STEPS / NUM_THREADS;
10 constexpr double STEP = 1.0 / NUM_STEPS;
11

11 / 37



Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

C++: Data Race

12 double pi = 0;
13

14 std::vector<std::thread> threads;
15

16 for (int i = 0; i < NUM_THREADS; ++i) {
17 uint64_t lower = THREAD_STEPS * i;
18 uint64_t upper = THREAD_STEPS * (i+1);
19 threads.emplace_back([=, &pi]() {
20 for (uint64_t j = lower; j < upper; ++j) {
21 double x = (j + 0.5) * STEP;
22 pi += 4.0/(1.0 + x*x) * STEP;
23 }
24 });
25 }
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C++: Data Race

26

27 for (auto &t : threads) t.join();
28

29 std::cout.precision(10);
30 std::cout << "Pi = " << pi << '\n';
31

32 return 0;
33 }
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C++: Data Race

1 $ clang++ -std=c++17 -lpthread -Wall pi.cc -o pi-cc
2 $ ./pi-cc
3 Pi = 1.156130797
4 $ ./pi-cc
5 Pi = 1.099799814

classical data race
Thread A liest pi = 0.1423

Thread B liest pi = 0.1423

Thread A schreibt pi = 0.7609

Thread B schreibt pi = 0.5768

pi = 0.5768, Thread As Berechnung ist verloren
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Observation

Problems arise when combining:

Mutability + Aliasing

v.emplace_back(...) auto const &x = v[0]
v.push_back(...) auto const &it : v
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You might have heard

Rust has a linear type system
i.e. each value may only be used once
Rust has an affine type system
i.e. each value may be used at most once
Rust is related to quantitative type theory
i.e. values track how often they may be used as type state
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Ownership: Bindings

1 struct Crop;
2

3 fn main() {
4 let c = Crop;
5

6 let _grinder1 = c; // moves c to _grinder1
7

8 let _grinder2 = c; // error: use of moved value: `c`
9 }
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Ownership: Functions

1 struct Crop;
2 struct Flour;
3

4 fn grind(_c: Crop) -> Flour {
5 Flour
6 // _c is freed here
7 }
8

9 fn main() {
10 let c = Crop;
11

12 grind(c); // c moves into `grind()`
13 grind(c); // error: use of moved value: `c`
14 }
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Returning Ownership

1 struct Book { page: u32 }
2

3 fn read(b: Book) -> Book {
4 println!("I read page {}", b.page);
5 b
6 }
7

8 fn main() {
9 let b = Book { page: 1 };
10 let b1 = read(b); // b moves into `read()`
11 // let b2 = read(b); // error: use of moved value: `b`
12 let _b2 = read(b1);
13 }
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Returning Ownership (Mutable)

8 fn turn_page(mut b: Book) -> Book {
9 b.page += 1;
10 b
11 }
12

13 fn main() {
14 let b = Book { page: 1 };
15

16 let b1 = read(b);
17 let b2 = turn_page(b1);
18 let _b3 = read(b2);
19 }
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Shared Borrow

1 struct Book { page: u32 }
2

3 fn read(b: &Book) {
4 println!("I read page {}", b.page);
5 }
6

7 fn main() {
8 let b = Book { page: 1 };
9 let l = &b;
10

11 read(&b);
12 read(l);
13 read(&b);
14 }

22 / 37



Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Mutable Borrow

7 fn turn_page(b: &mut Book) { b.page += 1; }
8

9 fn main() {
10 let mut b = Book { page: 1 };
11

12 read(&b);
13 turn_page(&mut b);
14 read(&b);
15

16 let l = &b;
17 // turn_page(&mut b); // error: cannot borrow `b` as
18 // mutable because it is also
19 // borrowed as immutable
20 read(l);
21 }
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Intermission: Copy Types

1 struct Dress;
2 #[derive(Copy, Clone)]
3 struct Mp3;
4

5 fn main() {
6 let shop_dress = Dress;
7 let _your_dress = shop_dress;
8 let _their_dress = shop_dress; // error:
9 // use of moved value:
10 // `shop_dress`
11

12 let shop_mp3 = Mp3;
13 let _your_mp3 = shop_mp3;
14 let _their_mp3 = shop_mp3; // This is fine
15 }
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Basic lifetimes

1 fn main() {
2 let r;
3

4 {
5 let x = 5;
6 r = &x; // error: `x` does not live long enough
7 }
8

9 println!("r: {}", r);
10 }
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Basic lifetimes

1 fn main() {
2 let r; // --------+-- 'a
3 // |
4 { // |
5 let x = 5; // -+-- 'b |
6 r = &x; // | |
7 } // -+ |
8 // |
9 println!("r: {}", r); // |
10 } // --------+

xmust live until the last use of r
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Returning References

1 struct Page;
2 struct Book {
3 page: u32,
4 content: Vec<Page>,
5 }
6

7 fn get_page<'a>(b: &'a Book, page: usize) -> &'a Page {
8 &b.content[page]
9 }
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Multiple Input Lifetimes

1 struct Book { page: u32 }
2

3 fn longer<'a>(a: &'a Book, b: &'a Book) -> &'a Book {
4 if a.page > b.page {
5 a
6 } else {
7 b
8 }
9 }
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Lifetime Elision

1 struct Page;
2 struct Book {
3 page: u32,
4 content: Vec<Page>,
5 }
6

7 fn get_page(b: &Book, page: usize) -> &Page {
8 &b.content[page]
9 }

if there is only one input lifetime all outputs get it
in methods all outputs get self’s lifetime

30 / 37



Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

1 Motivation

2 Ownership

3 Lifetimes

4 Rust against our Motivations

31 / 37



Rust’s
Ownership
Model

Florob

Motivation

Ownership

Lifetimes

Rust against
our
Motivations

Questions

Rust: Realloc

1 fn main() {
2 let mut v: Vec<String> = Vec::new();
3

4 v.push("Foo".to_string());
5 let x: &String = &v[0];
6 v.push("Bar".to_string());
7

8 println!("{}", x);
9 }
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Rust: Realloc

1 $ rustc vector.rs
2 error[E0502]: cannot borrow `v` as mutable because it is also

borrowed as immutable↪→

3 --> vector.rs:6:5
4 |
5 5 | let x: &String = &v[0];
6 | - immutable borrow occurs here
7 6 | v.push("Bar".to_string());
8 | ^^^^^^^^^^^^^^^^^^^^^^^^^ mutable borrow occurs here
9 7 |
10 8 | println!("{}", x);
11 | - immutable borrow later used here
12
13 error: aborting due to previous error
14
15 For more information about this error, try `rustc --explain E0502`.
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Rust: Iterator Invalidation

1 fn main() {
2 let mut v: Vec<String> = vec!["F".into(), "o".into(),
3 "o".into()];
4

5 for it in &v {
6 v.push(it.clone() + &it);
7 }
8 for it in &v {
9 println!("{}", it);
10 }
11 }
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Rust: Iterator Invalidation

1 $ rustc iter.rs
2 error[E0502]: cannot borrow `v` as mutable because it is also

borrowed as immutable↪→

3 --> iter.rs:6:9
4 |
5 5 | for it in &v {
6 | --
7 | |
8 | immutable borrow occurs here
9 | immutable borrow later used here
10 6 | v.push(it.clone() + &it);
11 | ^^^^^^^^^^^^^^^^^^^^^^^^ mutable borrow occurs here
12
13 error: aborting due to previous error
14
15 For more information about this error, try `rustc --explain E0502`.
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Calculating π

Lifecoding
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Thank you for your attention.
Any questions?

https://babelmonkeys.de/~florob/talks/RC-2020-02-05-rust-ownership.pdf
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