U23 C Workshop

Florian “Florob” Zeitz

Chaos Computer Club Cologne e.V.
http://koeln.ccc.de

2013-10-19

|| 9°°|L‘525||

o F = E 9DHAE

o

Chaos Computer Club Cologne

Florian Zeitz <florob@babelmonkeys.

Outline
g g|st.ory ©® Advanced
als_;clsl World Bit Operations
ello Wor .
Pointer
Variables Arrays
Logical Operations Structs
Arithmetic Operations Initiali
Loops nitializers
Enums
Branches .
Functi Compound Literals
unctions

g_

@
o

Ly
=] =l yQ (>
Chaos Computer Club Cologne

@ History

Hello World

Variables

Logical Operations
Arithmetic Operations
Loops

Branches

Functions

Bit Operations
Pointer

Arrays

Structs

Initializers

Enums

Compound Literals

I

O Ge

-

Chaos Computer Club Cologne

Florian Zeit:

History Basics Advanced
0000000000000 0O00O000O00O0O0000000000 0000000000000 0

= |nitially written in the context of Unix

1978 “The C Programming Language” by
Kernighan and Ritchie (first informal
specification, K&R C)

1983 ANSI forms a committee to standardize C

1988 “The C Programming Language” 2nd Brian Kernighan
Edition, updated to reflect ANSI
specification

1989 Specification approved by the ANSI
(ANSI C/C89)

1990 Identical specification approved by the

SO (€90) Ninaky
1999 Updated ISO specification (C99) o u Ill
Dennls REI 7.!31900 oo1az5

2011 Updated ISO specification (C11)

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

Basics

@ Basics

Hello World

Variables

Logical Operations
Arithmetic Operations
Loops

Branches

Functions

Bit Operations
Pointer

Arrays

Structs

Initializers

Enums

Compound Literals

I

O Ge

-

Chaos Computer Club Cologne

Florian Zeit:

Basics

Compiling code

§_

||73 |L1825

haos Computer Club Cologne

Basics
@00

Hello World

1 #include <stdio.h>

2
3 int main(void)
a {

5 printf ("Hello_ World\n") ;

7 return O;

- [N

=] F = E 9DHAE

o

Chaos Computer Club Cologne

Florian Z <florob@babelmonkeys.de>

Basics
@00

Hello World

1 #include <stdio.h> < [nclude definitions for standard 10

2
3 int main(void)
a {

5 printf ("Hello_ World\n") ;

7 return O;

731500 UU1825

=] F

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

[}

AP N G4

Basics
@00

Hello World

1 #include <stdio.h> < [nclude definitions for standard 10

3 int main(void) < Entry point
« {

5 printf ("Hello_ World\n") ;

7 return O;

731500 001825

=] F

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

Basics
@00

Hello World

1 #include <stdio.h> < [nclude definitions for standard 10
2

3 int main(void) < Entry point
« {

5 printf ("Hello_ World\n"); < Write: Hello
World<newline>

7 return O;

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

Basics
@00

Hello World

1 #include <stdio.h> < [nclude definitions for standard 10
2

3 int main(void) < Entry point

s {

5 printf ("Hello_ World\n"); < Write: Hello
World<newline>

6

7 return 0; < Return success (0) to the

system

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

History Basics Advanced
0@®000000000000000000000000000000 0000000000000 0

Hello World

Expressions

Expression

« printf ("Hello Worldn") ;

Stat‘e;nent
= "An expression is a sequence of operators and operands that
specifies computation of a value, or that designates an object
or a function, or that generates side effects, or that performs a
combination thereof.”

= Almost everything is an expression

= An expression followed by a ; is a statement

731500) Joo1825

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

History

Hello World

Blocks

1 #include <stdio.h>

3 int main(void)

+ {

5 printf ("Hello_ World\n");

6 Block
7 return 0;

s }

= Also known as compound statements

= Collection of statements, often can be used in place of a

single statement ||| Il”l |I||
8

= Relevant for scope (we'll talk about this later) 7a1500] Jooazs

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

Type system
C is statically typed
type var;

Variables require a declaration, including type

Florian Z

Variables can be declared as const meaning their value can
only be initialized, but never changed

lorob@babelmonkeys.de>

]
[

SDD| uuiazs"
Chaos Computer Club Cologne

Basics
O@000000000

Integer types

Name Domain Constant

_Bool {0, 1} 0

char [-27, 27 — 1] Sor'a'

int [INT_MIN, INT_MAX] 5

unsigned int | [0, UINT_MAX] 5u

intX_t [-2X-1 2X=1) _ 1] X € {8,16,32} | 6

uintX_t [0, 2X — 1] X € {8, 16,32} 6u

JURju]

o = - = =

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

Basics
00000000000

Floating-point types

Name | Domain | Constant

float CR 1.5f or .3f or 4.f or

5e3f or Ox4a.b2p4f
double | C R (more values than float) | 1.5 or .3 or 4. or 5e3

or Ox4a.b2p4

82
Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

Basics
O00@0000000

Void

= signals the absence of data (its domain is empty)
= void is an incomplete type

= no variable of type void can be declared

=] F

a| |731 suul quiazs"

Florian Z

lorob@babelmonkeys.de>

Chaos Computer Club Cologne

History

0008000000
Variables

Casts

= types can be converted to each other

= converting the value of an expression to another type is called
cast

= this can be done explicitly by prefixing the expression by a
type in parentheses

= e.g. (uint8_t)1025 (effectively a modulo 256)

a| rla!cxlzl |uIm!zI5||
U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

Basics
O0000@00000

Scope

= region of program text where a variable is visible
= C uses file and block scope

= variables declared outside a block have file scope, others have
block scope

||731suu| quiazs"

=] F

Chaos Computer Club Cologne

Florian Z lorob@babelmonkeys.de>

Basics
00000080000

Scope

1 void f(void)
2 { 3\

3 int a;

{
: int b Scope/Life- } Scope/Lifetime of a

} time of b

|| 9°°|L‘525||

= DA

o

[} [=

Chaos Computer Club Cologne

Florian Z

History Basics

Variables

Storage classes

= how variables are stored can be modified

= auto: lifetime is the associated block (default, rarely used
explicitly)

= static: lifetime is the entire program execution

= extern: the variable belongs to another module

= register: access should be as fast as possible (in a register),

can be ignored
a| !31!D!||u!1!!5||
U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

History Basics
00000000000®00000000000000000000

Advanced

00000000000000
Variables

printf()

int printf (const char *fmt, ...);

= takes a format string and any number of other parameters

= prints a string to stdout with the parameter formatted
according to the format string

%i, %d prints an int (anything smaller than int is automatically
converted to one here)

%f prints a double (floats are automatically converted to
double here)

%s prints a char* (string)

%c prints an int as ASCII character ||| Il”"l"
8|

731500) Joo1825

U23 C Workshop
Florian Zeitz <florob@babelmonkeys.de>

Basics
00000000080

Escape sequences

\n new line
\r carriage return
\t horizontal tab
\\ backslash
\" single quote
\"" double quote
\ <oct> ASCII character <oct>
\x<hex> ASCII character <hex>

[} [= = =

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

Basics
0000000000 e

printf()

1 int main(void) {
2 printf ("%c:, %i\n", 'a', 8);

4 return O0;

s}
Output: a: 8

I

DA

-

Chaos Computer Club Cologne
Florian Zeit:

Basics

Boolean values

= Everything that is not equal to 0 is interpreted as true
= Everything equal to 0 is false

= Logical operations always evaluate to 0 or 1

||731suu| quiazs"

=] F

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

Basics

Negation, Relational /Equality Operators

= la: negation
= a < b: less than

= a > b: greater than

= a <= b: less than or equal

= a >= b: greater than or equal
= a == b: equal

= a != b: not equal

[} [= = =

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

History

Logical Operations

Logical AND/OR

= expl && exp2: logical and (if expl is false, exp2 is not
evaluated

= expl || exp2: logical or (if expl is true, exp2 is not
evaluated)

= left-to-right evaluation is guaranteed, side-effects of exp2
might not take place

a| rla!cxlzl |uIm!zI5||
U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

Basics

Arithmetic Operators

Addition
Subtraction
Multiplication
Division
Modulo

u
PP PP P
*

g g g oy

YA

||?31suu| |DU1525||

] = =

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

History Basics

Arithmetic Operations

Short forms

= a += 3: Sameasa = a + 3

= a-=3 Sameasa =a - 3

= a *= 3: Sameasa = a * 3

= a /=3 Sameasa =a/ 3

= a %= 3 Sameasa =a% 3

= at++: (Post-)Increment, evaluates to a's old value
= a--: (Post-)Decrement, evaluates to a's old value
= ++a: (Pre-)Increment, evaluates to a's new value
Sp—

Pre-)Decrement, evaluates to a's new value ||| I|||I |I||

731500) Joo1825

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

History Basics Advanced
0000000000000 000O000e000000000000 0000000000000 0

Loops

while-Loop

while(condition) statement/block

= Runs as long as condition is true

= condition is evaluated before each iteration

do-while-Loop

do statement/block while(condition)

= Runs as long as condition is true
= condition is evaluated after each iteration

= runs at least once
~ 01825

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

istory asics dvanced
History B Ad 1
0000000000000 000O0000e00000000000 0000000000000 0

Loops

for(initialization; condition; expression)
statement/block

= Executes initialization
= Runs as long as condition is true
= condition is evaluated before each iteration

= Executes Expression after each iteration

731500) Joo1825

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

Basics
[e]e] o]

Example: Print the alphabet

1 for (char ¢ = 'a'; ¢ <= 'z'; ¢ = c+1)
2 putchar (c) ;

Chaos Computer Club Cologne

Florian Zeitz <florob@babelmonkeys.de>

Basics
[e]e]e]]

Changing the flow

= continue: Jumps imediately to the next loop iteration
(checking the condition first)

= break: Terminates the loop prematurely

||731suu| quiazs"

=] F

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

History Basics Advanced
0000000000000 0000000000e00000000 0000000000000 0

Branches

if-Statement

if (condition) statement/block
if (condition) statement/block else <«
statement/block

= if condition is true execute the first statement

= if condition is false execute the second statement

731500) Joo1825

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

History Basics

Advanced
0000000000000 000O00000000e0000000

0000000000000 0

Branches

switch-Statement

switch(condition) statement/block

= jumps to a statement labeled “case condition” within the
switch body

= if no such label exists jumps to a statement labeled
“default”

= if no such label exists jumps past the switch body

= switch body can be left with break

731500) Joo1825

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

Basics
(o]e] lele]

Example: Fibonacci

1 int fib(int i)

2 {

3 switch (i) {

4 case O:

5 case 1:

6 return i;

7 default:

8 return fib(i-1) + fib(i-2);
9 }

0

a| |731 suul quiazs"

o = = =

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

Example: Print a number
1 void printNumber (int num)
2 {
3 switch (num) {
4 case O:
5
6
7

puts("Zero");
break;

case 1:
8 puts ("One") ;
9 break;
10 default:
11
12

}
13}

puts("Computers only use zeros and ones") ;
a||!31!cx|!| UIEH!ZIS"
o = = = = Q>
Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

History Basics Advanced
0000000000000 00000000000000e0000 0000000000000 0

Branches

Exercises 1

Compiling code: gcc -std=c99 -Wall -o output input.c

@ Write, compile and execute a Hello World program

® Write a program that prints the faculty of the numbers 0 to
10 using an iterative approach

©® Write a program that prints the first 10 fibonacci numbers
using an iterative approach

® Write a program that prints all primes between 2 and 100
© Write a program that calculates the 5th power of all nu eI
BT

from 2 t0 10 I
500§ joo1825

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

Functions

each function has a declaration and a definition
definition

Florian Z

declarations are usually provided in separate header files
declaration: “This function exists and returns type

“This function works as follows

lorob@babelmonkeys.de>

]
[

SDD| uuiazs"
Chaos Computer Club Cologne

History

Functions

Declaration and Prototype

typel func (type2 paraml) ;

= declares a function returning typel, with one parameter of
type type2

= is both a declaration and a prototype

= prototype: “This function’s parameters have this types”

= parameter names may be omitted

= a function without parameters is declared with void as

parameter list
a| !31!D!||u!1!!5||
U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

Basics
[e]e] o]

Definition

typel func (type2 paraml)
block

= defines a function
= must match the prototype
= can double as declaration/prototype

a| |731 suul quiazs"

o = = =

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

History Basics Advanced
0000000000000000000000000000000e 00000000000000

Functions

Exercises 2

@ Write a program that prints the faculty of the numbers 0 to
10 using a recursive approach

® Write a program that prints the first 10 fibonacci numbers
using a recursive approach

® Implement a function that calculates the area of a triangle
and test it

O Implement a function returning the distance between two 3d
points (6 double parameters) using
double sqrt(double x); from <math.h>, add -1m to the
compile command

O Implement a program that counts the number of '1's i)'H Ill
input using int getchar(void); o |7s1500] Jonazs

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

Advanced

© Advanced
Bit Operations

Hello World .

_ Pointer
Variables
Logical Operations Arrays
o . Structs
Arithmetic Operations o
L Initializers
Boopsh Enums
ranc. - Compound Literals
Functions

I

O Ge

8

Chaos Computer Club Cologne

Florian Zeit:

Advanced
[]

Bit Operations

a << b: Shift a left by b Bit

a >> b: Shift a right by b Bit
= a & b: Bitwise and

a | b: Bitwise or

a ~ b: Bitwise exclusive or

= These support the same short form as the arithmetic
operations, e.g. a "= b

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

Advanced
@00000

Pointer type

= another scalar type
= points to another variable
= responsible for a lot of C's power

= also responsible for a lot of beginner confusion

||731suu| quiazs"

=] F

Chaos Computer Club Cologne

Florian Z lorob@babelmonkeys.de>

Advanced
O@0000

Pointer type

= declared as type *var
= read “pointer to type”
= contains the address at which a variable is stored

= special value NULL to indicate that the pointer is not currently
pointing anywhere

g_

@
o

|| uuiazs"
o F

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

Advanced
[o]e] lelele}

Address operator

1 int a;
2 int *a_p = &a;

= The & operator is used to get the address of a variable
= if var has the type type &var has the type type*
= above a_p is said to point to a

[} [= = =

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

Advanced
0O00@00

Indirection operator

1 int a;
2 int *a_p = &a;

4 *a_p = 5;

= The * operator is used to get the object stored at an address
= if var has the type type* *var has the type type
= above *a_p = 5 sets the value of a to 5

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

Advanced
000080

sizeof operator

1 _Bool b;

3 if (sizeof(b) > sizeof (char))
4 printf ("Booleans are,rather ,large here\n");

= The sizeof operator determines the size of a variable or type
= The granularity is the length of a char (one byte)

Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

History Advanced

000000
Pointer

Pointer arithmetic

1 int32_t a;
2 int32_t *a_p = &a;

4 a_p++;

= pointers store plain numbers (addresses)
= arithmetic works differently however

= addition and subtraction acts in the granularity of sizeof (a)

a| ||uuiaz£||

731500

= E.g. a_p++ above increments the value of a_p by 4

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

Advanced
[1]

Arrays

1 int A[4];

= aggregate data type

= contains a list of multiple adjacent variables
= int A[4]; declares an array of 4 integers

= indexes start at 0

||731suu| quiazs"

=] F

Chaos Computer Club Cologne

Florian Z lorob@babelmonkeys.de>

History

Arrays

Accessing array members

1 int A[4];

3 *(A+2) = 3;
« A[3] = 4;

= the expression A evaluates to a int* to the first element of A
= elements can therefore be accessed using pointer arithmetic

= e.g. x(A+2)= 3 sets the 3rd element of A to 3

= A[3] is syntactic sugar for (x((A)+(3)))

= 3[A] is therefore valid, but unintuitive | | Il”"l"

731500) Joo1825

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

History Basics Advanced

Structs

Structs

1 struct tag { = aggregate data type

2 int i; = structured, composed of

3 char c; multiple variables of different

4 ¥ types

5 struct tag s; = defined structures are

o struct tag *s_p = &s; referenced using a tag

! c = members are accessed using .

8 1 = 5

. sc ; tat = s_p—>i exists as syntactic sugar

for (xs_p).1i

a| rla!cxlzl UIEH!EIE"
U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

History Basics Advanced
0000000000000 0000O00O0000000000000 0000000000800 0

Initializers

Initializers

1 struct tag s = { 4, 'b' };

> int A[4] = { 1, 2, 3, 4 };

3 struct tag t = { .c = 'd', .1 =4 };
4+ int B[4] = { [2] = 3 };

s char C[] = "Hello";

= aggregated types can be initialized using initializers

= if not otherwise specified members are initialized in order
= a designator can be given to address a specific member
= unnamed members are initialized to 0

= string literals can also be used as initializers | Il "I
= array length can automatically be determined s 001825

731500

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

History

Enums

Enums

1 enum tag {

2 NAME1, NAME2

ER

4« enum month {

5 JAN = 1, FEB, MAR, APR, MAY, JUN,
6 JUL, AUG, SEP, 0OCT, NOV, DEZ

7}

s enum month birth_month;

= integer type with limited number of values
= other values can be assigned (acts like a normal integer)

= names are declared as integer constants, values starting Hlll”l |I||
= values can explicitly be assigned to a name ol §731500] Joureas

U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

Advanced

Compound Literals

1 struct tag s_p = &(struct tag){ 4, 5 };

= syntactically looks like casting a initializer
= defines an anonymous object

= scope and lifetime as if defined as a variable

g_

@
o

uuiazs"

=] =l yQ (>
Chaos Computer Club Cologne
Florian Zeitz <florob@babelmonkeys.de>

History

Compound Literals

Exercises 3

char *fgets(char *s, int size, FILE *stream);
int atoi(comst char =*nptr); // From <stdlib.h>

@ Write a program that counts the number of 1 Bits in an
integer read from stdin.

® Write a function that exchanges the content of two integer
variables

©® Write a function that sorts an integer array (nothing too fancy

O(n?) is fine)
a| 7|31!D!||UI01!2I5||
U23 C Workshop

Florian Zeitz <florob@babelmonkeys.de>

	History
	Basics
	Hello World
	Variables
	Logical Operations
	Arithmetic Operations
	Loops
	Branches
	Functions

	Advanced
	Bit Operations
	Pointer
	Arrays
	Structs
	Initializers
	Enums
	Compound Literals

