
XEP-0045: Multi-User Chat

Peter Saint-Andre
mailto:stpeter@jabber.org
xmpp:stpeter@jabber.org

https://stpeter.im/

in progress, last updated 2010-01-21
Version 1.25rc1

Status Type Short Name
Draft Standards Track muc

This specification defines anXMPPprotocol extension formulti-user text chat, wherebymultiple XMPP
users can exchange messages in the context of a room or channel, similar to Internet Relay Chat (IRC).
In addition to standard chatroom features such as room topics and invitations, the protocol defines a
strong room control model, including the ability to kick and ban users, to name room moderators and
administrators, to require membership or passwords in order to join the room, etc.

mailto:stpeter@jabber.org
xmpp:stpeter@jabber.org
https://stpeter.im/

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2010 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <http://xmpp.org/extensions/ipr-policy.
shtml> or obtained by writing to XMPP Standards Foundation, 1899Wynkoop Street, Suite 600, Denver,
CO 80202 USA).

http://xmpp.org/
http://xmpp.org/extensions/ipr-policy.shtml
http://xmpp.org/extensions/ipr-policy.shtml

Contents

1 Introduction 1

2 Scope 1

3 Requirements 2

4 Terminology 4
4.1 General Terms . 4
4.2 Room Types . 6
4.3 Dramatis Personae . 7

5 Roles, Affiliations, and Privileges 7
5.1 Roles . 7

5.1.1 Privileges . 8
5.1.2 Changing Roles . 9

5.2 Affiliations . 10
5.2.1 Privileges . 11
5.2.2 Changing Affiliations . 11

6 Entity Use Cases 12
6.1 Discovering Component Support for MUC . 13
6.2 Discovering Rooms . 13
6.3 Querying for Room Information . 15
6.4 Querying for Room Items . 17
6.5 Querying a Room Occupant . 18
6.6 Discovering Client Support for MUC . 18

7 Occupant Use Cases 20
7.1 Order of Events . 20
7.2 Entering a Room . 21

7.2.1 Groupchat 1.0 Protocol . 21
7.2.2 Basic MUC Protocol . 21
7.2.3 Presence Broadcast . 22
7.2.4 Default Roles . 24
7.2.5 Non-Anonymous Rooms . 24
7.2.6 Semi-Anonymous Rooms . 25
7.2.7 Password-Protected Rooms . 26
7.2.8 Members-Only Rooms . 26
7.2.9 Banned Users . 27
7.2.10 Nickname Conflict . 27
7.2.11 Max Users . 28
7.2.12 Locked Room . 28
7.2.13 Nonexistent Room . 29

7.2.14 Room Logging . 29
7.2.15 Discussion History . 29
7.2.16 Managing Discussion History . 31

7.3 Exiting a Room . 32
7.4 Changing Nickname . 34
7.5 Changing Availability Status . 37
7.6 Inviting Another User to a Room . 38

7.6.1 Direct Invitation . 38
7.6.2 Mediated Invitation . 38

7.7 Converting a One-to-One Chat Into a Multi-User Conference 40
7.8 Occupant Modification of the Room Subject . 44
7.9 Sending a Private Message . 44
7.10 Sending a Message to All Occupants . 45
7.11 Registering with a Room . 46
7.12 Getting Member List . 50
7.13 Discovering Reserved Room Nickname . 51
7.14 Requesting Voice . 52

8 Moderator Use Cases 52
8.1 Modifying the Room Subject . 53
8.2 Kicking an Occupant . 54
8.3 Granting Voice to a Visitor . 57
8.4 Revoking Voice from a Participant . 58
8.5 Modifying the Voice List . 60
8.6 Approving Voice Requests . 62

9 Admin Use Cases 63
9.1 Banning a User . 64
9.2 Banning a Service . 66
9.3 Modifying the Ban List . 68
9.4 Granting Membership to a User . 70
9.5 Granting Membership to a Service . 71
9.6 Revoking Membership . 73
9.7 Modifying the Member List . 75
9.8 Granting Moderator Privileges . 79
9.9 Revoking Moderator Privileges . 80
9.10 Modifying the Moderator List . 82
9.11 Approving Registration Requests . 84

10 Owner Use Cases 85
10.1 Creating a Room . 86

10.1.1 General Considerations . 86
10.1.2 Creating an Instant Room . 88
10.1.3 Creating a Reserved Room . 89

10.1.4 Requesting a Unique Room Name . 95
10.2 Subsequent Room Configuration . 96

10.2.1 Notification of Configuration Changes 103
10.3 Granting Ownership Privileges to a User . 104
10.4 Granting Ownership Privileges to a Service . 105
10.5 Revoking Ownership Privileges . 107
10.6 Modifying the Owner List . 109
10.7 Granting Administrative Privileges to a User 111
10.8 Granting Administrative Privileges to all Users of a Service 113
10.9 Revoking Administrative Privileges . 114
10.10 Modifying the Admin List . 116
10.11 Destroying a Room . 118

11 Error and Status Codes 121
11.1 Error Codes . 121
11.2 Status Codes . 122

12 Internationalization Considerations 122

13 Security Considerations 122
13.1 User Authentication and Authorization . 122
13.2 End-to-End Encryption . 123
13.3 Privacy . 123
13.4 Information Leaks . 123
13.5 Anonymity . 123
13.6 Denial of Service . 124
13.7 Other Considerations . 124

14 IANA Considerations 125

15 XMPP Registrar Considerations 125
15.1 Protocol Namespaces . 125
15.2 Service Discovery Category/Type . 125
15.3 Service Discovery Features . 125
15.4 Well-Known Service Discovery Nodes . 127
15.5 Field Standardization . 128

15.5.1 muc#register FORM_TYPE . 128
15.5.2 muc#request FORM_TYPE . 129
15.5.3 muc#roomconfig FORM_TYPE . 129
15.5.4 muc#roominfo FORM_TYPE . 131

15.6 Status Codes Registry . 132
15.6.1 Process . 132
15.6.2 Initial Submission . 132

15.7 URI Query Types . 135
15.7.1 join . 135
15.7.2 invite . 136

16 Business Rules 138
16.1 Addresses . 138
16.2 Message . 139
16.3 Presence . 139
16.4 IQ . 140

17 Implementation Notes 141
17.1 Services . 141

17.1.1 Allowable Traffic . 143
17.2 Clients . 145

17.2.1 IRC Command Mapping . 145

18 XML Schemas 147
18.1 http://jabber.org/protocol/muc . 147
18.2 http://jabber.org/protocol/muc#user . 148
18.3 http://jabber.org/protocol/muc#admin . 151
18.4 http://jabber.org/protocol/muc#owner . 152
18.5 http://jabber.org/protocol/muc#unique . 153

19 Acknowledgements 154

2 SCOPE

1 Introduction

Traditionally, instant messaging is thought to consist of one-to-one chat rather than many-
to-many chat, which is called variously ”groupchat” or ”text conferencing”. Groupchat
functionality is familiar from systems such as Internet Relay Chat (IRC) and the chatroom
functionality offered by popular consumer IM services. The Jabber/XMPP community de-
veloped and implemented a basic groupchat protocol as long ago as 1999. That ”groupchat
1.0” protocol provided a minimal feature set for chat rooms but was rather limited in scope.
This specification (Multi-User Chat or MUC) builds on the older ”groupchat 1.0” protocol in
a backwards-compatible manner but provides advanced features such as invitations, room
moderation and administration, and specialized room types.

2 Scope

This document addresses common requirements related to configuration of, participation
in, and administration of individual text-based conference rooms. All of the requirements
addressed herein apply at the level of the individual room and are ”common” in the sense that
they have been widely discussed within the Jabber community or are familiar from existing
text-based conference environments (e.g., Internet Relay Chat as defined in RFC 1459 1 and its
successors: RFC 2810 2, RFC 2811 3, RFC 2812 4, RFC 2813 5).
This document explicitly does not address the following:

• Relationships between rooms (e.g., hierarchies of rooms)

• Management of multi-user chat services (e.g., managing permissions across an entire
service or registering a global room nickname); such use cases are specified in Service
Administration 6

• Moderation of individual messages

• Encryption of messages sent through a room

• Advanced features such as attaching files to a room, integrating whiteboards, and using
MUC rooms as away tomanage the signalling formulti-user audio or video conferencing
(see Multiparty Jingle 7)

• Interaction between MUC deployments and foreign chat systems (e.g., gateways to IRC
or to legacy IM systems)

1RFC 1459: Internet Relay Chat <http://tools.ietf.org/html/rfc1459>.
2RFC 2810: Internet Relay Chat: Architecture <http://tools.ietf.org/html/rfc2810>.
3RFC 2811: Internet Relay Chat: Channel Management <http://tools.ietf.org/html/rfc2811>.
4RFC 2812: Internet Relay Chat: Client Protocol <http://tools.ietf.org/html/rfc2812>.
5RFC 2813: Internet Relay Chat: Server Protocol <http://tools.ietf.org/html/rfc2813>.
6XEP-0133: Service Administration <http://xmpp.org/extensions/xep-0133.html>.
7XEP-0272: Multiparty Jingle <http://xmpp.org/extensions/xep-0272.html>.

1

http://tools.ietf.org/html/rfc1459
http://tools.ietf.org/html/rfc2810
http://tools.ietf.org/html/rfc2811
http://tools.ietf.org/html/rfc2812
http://tools.ietf.org/html/rfc2813
http://xmpp.org/extensions/xep-0133.html
http://xmpp.org/extensions/xep-0133.html
http://xmpp.org/extensions/xep-0272.html
http://tools.ietf.org/html/rfc1459
http://tools.ietf.org/html/rfc2810
http://tools.ietf.org/html/rfc2811
http://tools.ietf.org/html/rfc2812
http://tools.ietf.org/html/rfc2813
http://xmpp.org/extensions/xep-0133.html
http://xmpp.org/extensions/xep-0272.html

3 REQUIREMENTS

• Mirroring or replication of rooms among multiple MUC deployments

This limited scope is not meant to disparage such topics, which are of inherent interest;
however, it is meant to focus the discussion in this document and to present a comprehensible
protocol that can be implemented by client and component developers alike. Future specifi-
cations might address the topics mentioned above.

3 Requirements

This document addresses the minimal functionality provided by Jabber-based multi-user chat
services that existed in 2002 when development of MUC began. For the sake of backwards-
compatibility, this document uses the original ”groupchat 1.0” protocol for this baseline
functionality, with the result that:

• Each room is identified as <room@service> (e.g., <jdev@conference.jabber.org>), where
”room” is the name of the room and ”service” is the hostname at which the multi-user
chat service is running.

• Each occupant in a room is identified as <room@service/nick>, where ”nick” is the room
nickname of the occupant as specified on entering the room or subsequently changed
during the occupant’s visit.

• A user enters a room (i.e., becomes an occupant) by sending directed presence to
<room@service/nick>.

• An occupant can change his or her room nickname and availability status within the
room by sending presence information to <room@service/newnick>.

• Messages sent within multi-user chat rooms are of a special type ”groupchat” and are
addressed to the room itself (room@service), then reflected to all occupants.

• An occupant exits a room by sending presence of type ”unavailable” to its current
<room@service/nick>.

The additional features and functionality addressed in MUC include the following:

1. native conversation logging (no in-room bot required)

2. enabling users to request membership in a room

3. enabling occupants to view an occupant’s full JID in a non-anonymous room

4. enabling moderators to view an occupant’s full JID in a semi-anonymous room

5. allowing only moderators to change the room subject

2

3 REQUIREMENTS

6. enabling moderators to kick participants and visitors from the room

7. enabling moderators to grant and revoke voice (i.e., the privilege to speak) in a moder-
ated room, and to manage the voice list

8. enabling admins to grant and revokemoderator privileges, and tomanage themoderator
list

9. enabling admins to ban users from the room, and to manage the ban list

10. enabling admins to grant and revokemembership privileges, and tomanage themember
list for a members-only room

11. enabling owners to configure various room parameters (e.g., limiting the number of oc-
cupants)

12. enabling owners to specify other owners

13. enabling owners to grant and revoke administrative privileges, and tomanage the admin
list

14. enabling owners to destroy the room

In addition, this document provides protocol elements for supporting the following room
types:

1. public vs. hidden

2. persistent vs. temporary

3. password-protected vs. unsecured

4. members-only vs. open

5. moderated vs. unmoderated

6. non-anonymous vs. semi-anonymous

The extensions needed to implement these requirements are qualified by the
’http://jabber.org/protocol/muc’ namespace (and the #owner, #admin, and #user frag-
ments on the main namespace URI).

3

4 TERMINOLOGY

4 Terminology

4.1 General Terms

Affiliation A long-lived association or connection with a room; the possible affiliations are
”owner”, ”admin”, ”member”, and ”outcast” (naturally it is also possible to have no af-
filiation); affiliation is distinct from role. An affiliation lasts across a user’s visits to a
room.

Ban To remove a user from a room such that the user is not allowed to re-enter the room (until
and unless the ban has been removed). A banned user has an affiliation of ”outcast”.

Bare JID The <user@host> by which a user is identified outside the context of any existing
session or resource; contrast with Full JID and Room JID.

Full JID The <user@host/resource> by which an online user is identified outside the context
of a room; contrast with Bare JID and Room JID.

GC The minimal ”groupchat 1.0” protocol developed within the Jabber community in 1999;
MUC is backwards-compatible with GC.

History A limited number of message stanzas sent to a new occupant to provide the context
of current discussion.

Invitation A special message sent from one user to another asking the recipient to join a
room; the invitation can be sent directly (see Direct MUC Invitations XEP-0249: Direct
MUC Invitations <http://xmpp.org/extensions/xep-0249.html>.) or mediated through
the room (as described under Inviting Another User to a Room).

IRC Internet Relay Chat.

Kick To temporarily remove a participant or visitor from a room; the user is allowed to re-
enter the room at any time. A kicked user has a role of ”none”.

Logging Storage of discussions that occur within a room for public retrieval outside the con-
text of the room.

Member A user who is on the ”whitelist” for a members-only room or who is registered with
an open room. A member has an affiliation of ”member”.

Moderator A room role that is usually associated with room admins but that may be granted
to non-admins; is allowed to kick users, grant and revoke voice, etc. A moderator has a
role of ”moderator”.

MUC The multi-user chat protocol for text-based conferencing specified in this document.

Occupant Any user who is in a room (this is an ”abstract class” and does not correspond to
any specific role).

4

4 TERMINOLOGY

Outcast A user who has been banned from a room. An outcast has an affiliation of ”outcast”.

Participant An occupant who does not have administrative privileges; in a moderated room, a
participant is further defined as having voice (in contrast to a visitor). A participant has
a role of ”participant”.

Private Message A message sent from one occupant directly to another’s room JID (not to the
room itself for broadcasting to all occupants).

Role A temporary position or privilege level within a room, distinct from a user’s long-lived
affiliation with the room; the possible roles are ”moderator”, ”participant”, and ”visi-
tor” (it is also possible to have no defined role). A role lasts only for the duration of an
occupant’s visit to a room.

Room A virtual space that users figuratively enter in order to participate in real-time, text-
based conferencing with other users.

Room Administrator A user empowered by the room owner to perform administrative func-
tions such as banning users; however, a room administrator is not allowed to change the
room configuration or to destroy the room. An admin has an affiliation of ”admin”.

Room ID The localpart of a Room JID, which may be opaque and thus lack meaning for human
users (see under Business Rules for syntax); contrast with Room Name.

Room JID The <room@service/nick> by which an occupant is identified within the context of
a room; contrast with Bare JID and Full JID.

Room Name A user-friendly, natural-language name for a room, configured by the room
owner and presented in Service Discovery queries; contrast with Room ID.

Room Nickname The resourcepart of a Room JID (see Business Rules for syntax); this is the
”friendly name” by which an occupant is known in the room.

Room Owner The user who created the room or a user who has been designated by the room
creator or owner as someone with owner privileges (if allowed); an owner is allowed to
change the room configuration and destroy the room, in addition to all administrative
privileges. An owner has an affiliation of ”owner”.

Room Roster A client’s representation of the occupants in a room.

Server An XMPP server that may ormay not have associated with it a text-based conferencing
service.

Service A host that offers text-based conferencing capabilities; often but not necessarily a
sub-domain of an XMPP server (e.g., conference.jabber.org).

Subject A temporary discussion topic within a room.

Visit A user’s ”session” in a room, beginning when the user enters the room (i.e., becomes an
occupant) and ending when the user exits the room.

5

4 TERMINOLOGY

Visitor In a moderated room, an occupant who does not have voice (in contrast to a partici-
pant). A visitor has a role of ”visitor”.

Voice In a moderated room, the privilege to send messages to all occupants.

4.2 Room Types

Fully-Anonymous Room A room in which the full JIDs or bare JIDs of occupants cannot be
discovered by anyone, including room admins and room owners; such rooms are NOT
RECOMMENDED or explicitly supported by MUC, but are possible using this protocol if
a service implementation offers the appropriate configuration options; contrast with
Non-Anonymous Room and Semi-Anonymous Room.

Hidden Room A room that cannot be found by any user through normalmeans such as search-
ing and service discovery; antonym: Public Room.

Members-Only Room A room that a user cannot enter without being on the member list;
antonym: Open Room.

Moderated Room A room in which only those with ”voice” are allowed to sendmessages to all
occupants; antonym: Unmoderated Room.

Non-Anonymous Room A room in which an occupant’s full JID is exposed to all other occu-
pants, although the occupant can choose any desired room nickname; contrast with
Semi-Anonymous Room and Fully-Anonymous Room.

Open Room A room that anyone is allowed to enter without being on the member list;
antonym: Members-Only Room.

Password-Protected Room A room that a user cannot enter without first providing the correct
password; antonym: Unsecured Room.

Persistent Room A room that is not destroyed if the last occupant exits; antonym: Temporary
Room.

Public Room A room that can be found by any user through normal means such as searching
and service discovery; antonym: Hidden Room.

Semi-Anonymous Room A room in which an occupant’s full JID can be discovered by room
admins only; contrast with Fully-Anonymous Room and Non-Anonymous Room.

Temporary Room A room that is destroyed if the last occupant exits; antonym: Persistent
Room.

Unmoderated Room A room in which any occupant is allowed to send messages to all occu-
pants; antonym: Moderated Room.

Unsecured Room A room that anyone is allowed to enter without first providing the correct
password; antonym: Password-Protected Room.

6

5 ROLES, AFFILIATIONS, AND PRIVILEGES

4.3 Dramatis Personae

Most of the examples in this document use the scenario of the witches’ meeting held in a dark
cave at the beginning of Act IV, Scene I of Shakespeare’s Macbeth, represented here as the
”coven@chat.shakespeare.lit” chatroom. The characters are as follows:

Room Nickname Full JID Affiliation
firstwitch crone1@shakespeare.lit/desktop Owner
secondwitch wiccarocks@shakespeare.lit/laptop Admin
thirdwitch hag66@shakespeare.lit/pda None

5 Roles, Affiliations, and Privileges

A user might be allowed to perform any number of actions in a room, from joining or sending
a message to changing configuration options or destroying the room altogether. We call each
permitted action a ”privilege”. There are two ways we might structure privileges:

1. Define each privilege atomically and explicitly define each user’s particular privileges;
this is flexible but can be confusing to manage.

2. Define bundles of privileges that are generally applicable and assign a user-friendly
”shortcut” to each bundle (e.g., ”moderator” or ”admin”).

MUC takes the second approach.
MUC also defines two different associations: long-lived affiliations and session-specific
roles. These two association types are distinct from each other in MUC, since an affiliation
lasts across visits, while a role lasts only for the duration of a visit. In addition, there is no
one-to-one correspondence between roles and affiliations; for example, someone who is not
affiliated with a room may be a (temporary) moderator, and a member may be a participant
or a visitor in a moderated room. These concepts are explained more fully below.

5.1 Roles

The following roles are defined:

Name Support
Moderator REQUIRED
None N/A (the absence of a role)
Participant REQUIRED
Visitor RECOMMENDED

7

5 ROLES, AFFILIATIONS, AND PRIVILEGES

Roles are temporary in that they do not necessarily persist across a user’s visits to the room
and MAY change during the course of an occupant’s visit to the room. An implementation
MAY persist roles across visits and SHOULD do so for moderated rooms (since the distinction
between visitor and participant is critical to the functioning of a moderated room).
There is no one-to-one mapping between roles and affiliations (e.g., a member could be a
participant or a visitor).
A moderator is the most powerful occupant within the context of the room, and can to some
extent manage other occupants’ roles in the room. A participant has fewer privileges than
a moderator, although he or she always has the right to speak. A visitor is a more restricted
role within the context of a moderated room, since visitors are not allowed to send messages
to all occupants (depending on room configuration, it is even possible that visitors’ presence
will not be broadcast to the room).
Roles are granted, revoked, and maintained based on the occupant’s room nickname or full
JID rather than bare JID. The privileges associated with these roles, as well as the actions that
trigger changes in roles, are defined below.
Information about roles MUST be sent in all presence stanzas generated or reflected by the
room and thus sent to occupants (if the room is configured to broadcast presence for a given
role).

5.1.1 Privileges

For the most part, roles exist in a hierarchy. For instance, a participant can do anything a
visitor can do, and a moderator can do anything a participant can do. Each role has all the
privileges possessed by the next-lowest role, plus additional privileges; these privileges are
specified in the following table as defaults (an implementation MAY provide configuration
options that override these defaults).

Privilege None Visitor Participant Moderator
Present in Room No Yes Yes Yes
Receive Messages No Yes Yes Yes
Receive Occupant Presence No Yes Yes Yes
Broadcast Presence to All Occupants No Yes* Yes Yes
Change Availability Status No Yes* Yes Yes
Change Room Nickname No Yes* Yes Yes
Send Private Messages No Yes* Yes Yes
Invite Other Users No Yes* Yes* Yes
Send Messages to All No No** Yes Yes
Modify Subject No No* Yes* Yes
Kick Participants and Visitors No No No Yes
Grant Voice No No No Yes
Revoke Voice No No No Yes***

8

5 ROLES, AFFILIATIONS, AND PRIVILEGES

* Default; configuration settings MAY modify this privilege.
* An implementation MAY grant voice by default to visitors in unmoderated rooms.
** A moderator MUST NOT be able to revoke voice privileges from an admin or owner.

5.1.2 Changing Roles

The ways in which an occupant’s role changes are well-defined. Sometimes the change results
from the occupant’s own action (e.g., entering or exiting the room), whereas sometimes
the change results from an action taken by a moderator, admin, or owner. If an occupant’s
role changes, a MUC service implementation MUST change the occupant’s role to reflect the
change and communicate the change to all occupants (if the room is configured to broadcast
presence for a given role). Role changes and their triggering actions are specified in the
following table.

> None Visitor Participant Moderator
None -- Enter moderated

room
Enter
unmoderated
room

Admin or owner
enters room

Visitor Exit room or be
kicked by a
moderator

-- Moderator
grants voice

Admin or owner
grants
moderator
privileges

Participant Exit room or be
kicked by a
moderator

Moderator
revokes voice

-- Admin or owner
grants
moderator
privileges

Moderator Exit room or be
kicked by an
admin or owner

Admin or owner
changes role to
visitor *

Admin or owner
changes role to
participant or
revokes
moderator
privileges *

--

* A moderator MUST NOT be able to revoke moderator privileges from an occupant who is
equal to or above the moderator in the hierarchy of affiliations.
Note: Certain roles are typically implicit in certain affiliations. For example, an admin or
owner is automatically a moderator, so if an occupant is granted an affiliation of admin then
the occupant will by that fact be granted a role of moderator; similarly, when an occupant is
granted an affiliation of member in a moderated room, the occupant automatically has a role
of participant. However, the loss of the admin affiliation does not necessarily mean that the
occupant no longer has a role of moderator (since a ”mere” occupant can be a moderator).
Therefore, the role that is gained when an occupant is granted a certain affiliation is stable,
whereas the role that is lost when an occupant loses a certain affilitation is not hardcoded

9

5 ROLES, AFFILIATIONS, AND PRIVILEGES

and is left up to the implementation. Since a client cannot predict what the role will be after
revoking a certain affiliation, if it wants to remove both the admin/owner affiliation and the
moderator role at the same time then it must specifically request the role change in addi-
tion to the affiliation change by including both the ’role’ attribute and the ’affiliation’ attribute.

5.2 Affiliations

The following affiliations are defined:

1. Owner

2. Admin

3. Member

4. Outcast

5. None (the absence of an affiliation)

Support for the owner affiliation is REQUIRED. Support for the admin, member, and outcast
affiliations is RECOMMENDED. (The ”None” affiliation is the absence of an affiliation.)
These affiliations are long-lived in that they persist across a user’s visits to the room and are
not affected by happenings in the room. In addition, there is no one-to-one mapping between
these affiliations and an occupant’s role within the room. When determining the affiliation
of an entity, an implementation SHOULD match JIDs in the following order (these matching
rules are the same as those defined for privacy lists in RFC 3921):

1. <user@domain/resource> (only that resource matches)

2. <user@domain> (any resource matches)

3. <domain/resource> (only that resource matches)

4. <domain> (the domain itself matches, as does any user@domain or domain/resource)

If a user without a defined affiliation enters a room, the user’s affiliation is defined as ”none”;
however, this affiliation does not persist across visits (i.e., a service does not maintain a ”none
list” across visits).
The member affiliation provides a way for a room owner or admin to specify a ”whitelist” of
users who are allowed to enter amembers-only room. When amember enters amembers-only
room, his or her affiliation does not change, no matter what his or her role is. The member
affiliation also provides a way for users to effectively register with an open room and thus be
lastingly associated with that room in some way (one result may be that the user’s nickname
is reserved in the room).
An outcast is a user who has been banned from a room and who is not allowed to enter the

10

5 ROLES, AFFILIATIONS, AND PRIVILEGES

room.
Information about affiliations MUST be sent in all presence stanzas generated or reflected by
the room and sent to occupants (if the room is configured to broadcast presence for a given
role).

5.2.1 Privileges

For the most part, affiliations exist in a hierarchy. For instance, an owner can do anything an
admin can do, and an admin can do anything a member can do. Each affiliation has all the
privileges possessed by the next-lowest affiliation, plus additional privileges; these privileges
are specified in the following table.

Privilege Outcast None Member Admin Owner
Enter Open Room No Yes* Yes Yes Yes
Register with Open Room No Yes N/A N/A N/A
Retrieve Member List No No Yes Yes Yes
Enter Members-Only Room No No Yes* Yes Yes
Ban Members and Unaffiliated Users No No No Yes Yes
Edit Member List No No No Yes Yes
Edit Moderator List No No No Yes** Yes**
Edit Admin List No No No No Yes
Edit Owner List No No No No Yes
Change Room Configuration No No No No Yes
Destroy Room No No No No Yes

* As a default, an unaffiliated user enters a moderated room as a visitor, and enters an open
room as a participant. A member enters a room as a participant. An admin or owner enters a
room as a moderator.
* An admin or owner MUST NOT be able to revoke moderation privileges from another admin
or owner.

5.2.2 Changing Affiliations

The ways in which a user’s affiliation changes are well-defined. Sometimes the change results
from the user’s own action (e.g., registering as a member of the room), whereas sometimes
the change results from an action taken by an admin or owner. If a user’s affiliation changes,
a MUC service implementation MUST change the user’s affiliation to reflect the change and
communicate that to all occupants (if the room is configured to broadcast presence for a
given role). Affiliation changes and their triggering actions are specified in the following table.

11

6 ENTITY USE CASES

> Outcast None Member Admin Owner
Outcast -- Admin or

owner
removes ban

Admin or
owner adds
user to
member list

Owner adds
user to
admin list

Owner adds
user to
owner list

None Admin or
owner
applies ban

-- Admin or
owner adds
user to
member list,
or user
registers as
member (if
allowed)

Owner adds
user to
admin list

Owner adds
user to
owner list

Member Admin or
owner
applies ban

Admin or
owner
changes
affiliation to
”none”

-- Owner adds
user to
admin list

Owner adds
user to
owner list

Admin Owner
applies ban

Owner
changes
affiliation to
”none”

Owner
changes
affiliation to
”member”

-- Owner adds
user to
owner list

Owner Owner
applies ban

Owner
changes
affiliation to
”none”

Owner
changes
affiliation to
”member”

Owner
changes
affiliation to
”admin”

--

Note: This table only offers a basic description of state changes. There are a lot of cases that
may seemmore complex. E.g. if <capulet.lit> is in the outcast list <juliet@capulet.lit> may still
be given the status of a member by adding her to the member list, while <tybalt@capulet.lit>
and others remain outcasts. A table to completely describe all those cases would be rather
large and is therefore not included in this document.

6 Entity Use Cases

A MUC implementation MUST support Service Discovery 8 (”disco”). Any entity can complete
the following disco-related use cases.

8XEP-0030: Service Discovery <http://xmpp.org/extensions/xep-0030.html>.

12

http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0030.html

6 ENTITY USE CASES

6.1 Discovering Component Support for MUC

An entity may wish to discover if a service implements the Multi-User Chat protocol; in order
to do so, it sends a service discovery information (”disco#info”) query to the component’s JID.

Listing 1: Entity Queries Chat Service for MUC Support via Disco
<iq from=’hag66@shakespeare.lit/pda’

id=’lx09df27 ’
to=’chat.shakespeare.lit’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/disco#info’/>
</iq>

The service MUST return its identity and the features it supports.

Listing 2: Service Returns Disco Info Results
<iq from=’chat.shakespeare.lit’

id=’lx09df27 ’
to=’hag66@shakespeare.lit/pda’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/disco#info’>
<identity

category=’conference ’
name=’Shakespearean␣Chat␣Service ’
type=’text’/>

<feature var=’http:// jabber.org/protocol/muc’/>
</query >

</iq>

6.2 Discovering Rooms

The service discovery items (”disco#items”) protocol enables an entity to query a service for
a list of associated items, which in the case of a chat service would consist of the specific chat
rooms hosted by the service.

Listing 3: Entity Queries Chat Service for Rooms
<iq from=’hag66@shakespeare.lit/pda’

id=’zb8q41f4 ’
to=’chat.shakespeare.lit’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/disco#items’/>
</iq>

13

6 ENTITY USE CASES

The service SHOULD return a full list of the public rooms it hosts (i.e., not return any rooms
that are hidden).

Listing 4: Service Returns Disco Item Results
<iq from=’chat.shakespeare.lit’

id=’zb8q41f4 ’
to=’hag66@shakespeare.lit/pda’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/disco#items’>
<item jid=’heath@chat.shakespeare.lit’

name=’A␣Lonely␣Heath’/>
<item jid=’coven@chat.shakespeare.lit’

name=’A␣Dark␣Cave’/>
<item jid=’forres@chat.shakespeare.lit’

name=’The␣Palace ’/>
<item jid=’inverness@chat.shakespeare.lit’

name=’Macbeth's␣Castle ’/>
</query >

</iq>

If the full list of rooms is large (see XEP-0030 for details), the service MAY return only a
partial list of rooms. If it does so, it SHOULD include a <set/> element qualified by the
’http://jabber.org/protocol/rsm’ namespace (as defined in Result Set Management 9) to
indicate that the list is not the full result set.

Listing 5: Service Returns Limited List of Disco Item Results
<iq from=’chat.shakespeare.lit’

id=’hx51v49s ’
to=’hag66@shakespeare.lit/pda’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/disco#items’>
<item jid=’alls -well -that -ends -well@chat.shakespeare.lit’/>
<item jid=’as-you -like -it@chat.shakespeare.lit’/>
<item jid=’cleopatra@chat.shakespeare.lit’/>
<item jid=’comedy -of -errors@chat.shakespeare.lit’/>
<item jid=’coriolanus@chat.shakespeare.lit’/>
<item jid=’cymbeline@chat.shakespeare.lit’/>
<item jid=’hamlet@chat.shakespeare.lit’/>
<item jid=’henry -the -fourth -one@chat.shakespeare.lit’/>
<item jid=’henry -the -fourth -two@chat.shakespeare.lit’/>
<item jid=’henry -the -fifth@chat.shakespeare.lit’/>
<set xmlns=’http:// jabber.org/protocol/rsm’>

<first index=’0’>alls -well -that -ends -well@chat.shakespeare.lit</
first>

<last>henry -the -fifth@chat.shakespeare.lit</last>

9XEP-0059: Result Set Management <http://xmpp.org/extensions/xep-0059.html>.

14

http://xmpp.org/extensions/xep-0059.html
http://xmpp.org/extensions/xep-0059.html

6 ENTITY USE CASES

<count >37</count>
</set>

</query >
</iq>

6.3 Querying for Room Information

Using the disco#info protocol, an entity may also query a specific chat room for more detailed
information about the room. An entity SHOULD do so before entering a room in order
to determine the privacy and security profile of the room configuration (see the Security
Considerations for details).

Listing 6: Entity Queries for Information about a Specific Chat Room
<iq from=’hag66@shakespeare.lit/pda’

id=’ik3vs715 ’
to=’coven@chat.shakespeare.lit’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/disco#info’/>
</iq>

The room MUST return its identity and SHOULD return the features it supports:

Listing 7: Room Returns Disco Info Results
<iq from=’coven@chat.shakespeare.lit’

id=’ik3vs715 ’
to=’hag66@shakespeare.lit/pda’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/disco#info’>
<identity

category=’conference ’
name=’A␣Dark␣Cave’
type=’text’/>

<feature var=’http:// jabber.org/protocol/muc’/>
<feature var=’muc_passwordprotected ’/>
<feature var=’muc_hidden ’/>
<feature var=’muc_temporary ’/>
<feature var=’muc_open ’/>
<feature var=’muc_unmoderated ’/>
<feature var=’muc_nonanonymous ’/>

</query >
</iq>

Note: The room SHOULD return the materially-relevant features it supports, such as password
protection and room moderation (these are listed fully in the feature registry maintained by
the XMPP Registrar; see also the XMPP Registrar section of this document).

15

6 ENTITY USE CASES

A chatroom MAY return more detailed information in its disco#info response using Service
Discovery Extensions 10, identified by inclusion of a hidden FORM_TYPE field whose value is
’http://jabber.org/protocol/muc#roominfo’. Such information might include a more verbose
description of the room, the current room subject, and the current number of occupants in
the room:

Listing 8: Room Returns Extended Disco Info Results
<iq from=’coven@chat.shakespeare.lit’

id=’ik3vs715 ’
to=’hag66@shakespeare.lit/pda’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/disco#info’>
<identity

category=’conference ’
name=’A␣Dark␣Cave’
type=’text’/>

<feature var=’http:// jabber.org/protocol/muc’/>
<feature var=’muc_passwordprotected ’/>
<feature var=’muc_hidden ’/>
<feature var=’muc_temporary ’/>
<feature var=’muc_open ’/>
<feature var=’muc_unmoderated ’/>
<feature var=’muc_nonanonymous ’/>
<x xmlns=’jabber:x:data ’ type=’result ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >http: // jabber.org/protocol/muc#roominfo </value>

</field >
<field var=’muc#roominfo_description ’ label=’Description ’>

<value >The place for all good witches!</value>
</field >
<field var=’muc#roominfo_changesubject ’ label=’Occupants␣May␣

Change␣the␣Subject ’>
<value >true</value>

</field >
<field var=’muc#roominfo_contactjid ’ label=’Contact␣Addresses ’>

<value >crone1@shakespeare.lit</value >
</field >
<field var=’muc#roominfo_subject ’ label=’Current␣Discussion␣

Topic’>
<value >Spells </value>

</field >
<field var=’muc#roomconfig_changesubject ’ label=’Subject␣can␣be␣

modified ’>
<value >true</value>

</field >
<field var=’muc#roominfo_occupants ’ label=’Number␣of␣occupants ’>

10XEP-0128: Service Discovery Extensions <http://xmpp.org/extensions/xep-0128.html>.

16

http://xmpp.org/extensions/xep-0128.html
http://xmpp.org/extensions/xep-0128.html
http://xmpp.org/extensions/xep-0128.html

6 ENTITY USE CASES

<value >3</value>
</field >
<field var=’muc#roominfo_ldapgroup ’ label=’Associated␣LDAP␣Group

’>
<value >dc=lit ,dc=shakespeare ,cn=witches </value>

</field >
<field var=’muc#roominfo_lang ’ label=’Language␣of␣discussion ’>

<value >en</value>
</field >
<field var=’muc#roominfo_logs ’ label=’URL␣for␣discussion␣logs’>

<value >http: //www.shakespeare.lit/chatlogs/coven/</value>
</field >
<field var=’muc#roominfo_pubsub ’ label=’Associated␣pubsub␣node’>

<value >xmpp:pubsub.shakespeare.lit?;node=the -coven -node</value
>

</field >
</x>

</query >
</iq>

Some extended room information is dynamically generated (e.g., the URL for discussion logs,
which may be based on service-wide configuration), whereas other information is based on
the more-stable room configuration, which is why any field defined for the muc#roomconfig
FORM_TYPE can be included in the extended service discovery fields (as shown above for the
muc#roomconfig_changesubject field).
Note: The foregoing extended service discovery fields for the
’http://jabber.org/protocol/muc#roominfo’ FORM_TYPE are examples only and might
be supplemented in the future via the mechanisms described in the Field Standardization
section of this document.

6.4 Querying for Room Items

An entity MAY also query a specific chat room for its associated items:

Listing 9: Entity Queries for Items Associated with a Specific Chat Room
<iq from=’hag66@shakespeare.lit/pda’

id=’kl2fax27 ’
to=’coven@chat.shakespeare.lit’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/disco#items’/>
</iq>

An implementation MAY return a list of existing occupants if that information is publicly
available, or return no list at all if this information is kept private. Implementations and
deployments are advised to turn off such information sharing by default.

17

6 ENTITY USE CASES

Listing 10: Room Returns Disco Item Results (Items are Public)
<iq from=’coven@chat.shakespeare.lit’

id=’kl2fax27 ’
to=’hag66@shakespeare.lit/pda’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/disco#items’>
<item jid=’coven@chat.shakespeare.lit/firstwitch ’/>
<item jid=’coven@chat.shakespeare.lit/secondwitch ’/>

</query >
</iq>

Note: These <item/> elements are qualified by the disco#items namespace, not the muc
namespace; this means that they cannot possess ’affiliation’ or ’role’ attributes, for example.
If the list of occupants is private, the room MUST return an empty <query/> element, in
accordance with XEP-0030.

Listing 11: Room Returns Empty Disco Item Results (Items are Private)
<iq from=’coven@chat.shakespeare.lit’

id=’kl2fax27 ’
to=’hag66@shakespeare.lit/pda’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/disco#items’/>
</iq>

6.5 Querying a Room Occupant

If a non-occupant attempts to send a disco request to an address of the form
<room@service/nick>, a MUC service MUST return a <bad-request/> error. If an occu-
pant sends such a request, the service MAY pass it through the intended recipient; see the
Implementation Guidelines section of this document for details.

6.6 Discovering Client Support for MUC

An entity might want to discover if one of the entity’s contacts supports the Multi-User Chat
protocol (e.g., before attempting to invite the contact to a room). This can be done using
Service Discovery.

Listing 12: Entity Queries Contact Regarding MUC Support
<iq from=’hag66@shakespeare.lit/pda’

id=’yh2fs843 ’
to=’wiccarocks@shakespeare.lit/laptop ’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/disco#info’/>

18

6 ENTITY USE CASES

</iq>

The client SHOULD return its identity and the features it supports.

Listing 13: Contact Returns Disco Info Results
<iq from=’wiccarocks@shakespeare.lit/laptop ’

id=’yh2fs843 ’
to=’hag66@shakespeare.lit/pda’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/disco#info’>
<identity

category=’client ’
type=’pc’/>

...
<feature var=’http:// jabber.org/protocol/muc’/>
...

</query >
</iq>

An entity may also query a contact regarding which rooms the contact is in. This is done
by querying the contact’s full JID (<user@host/resource>) while specifying the well-known
Service Discovery node ’http://jabber.org/protocol/muc#rooms’.

Listing 14: Entity Queries Contact for Current Rooms
<iq from=’hag66@shakespeare.lit/pda’

id=’gp7w61v3 ’
to=’wiccarocks@shakespeare.lit/laptop ’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/disco#items’
node=’http: // jabber.org/protocol/muc#rooms ’/>

</iq>

Listing 15: Contact Returns Room Query Results
<iq from=’wiccarocks@shakespeare.lit/laptop ’

id=’gp7w61v3 ’
to=’hag66@shakespeare.lit/pda’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/disco#items’
node=’http: // jabber.org/protocol/muc#rooms ’>

<item jid=’coven@chat.shakespeare.lit’/>
<item jid=’characters@conference.shakespeare.lit’/>

</query >
</iq>

Optionally, the contact MAY include its roomnick as the value of the ’name’ attribute:

19

7 OCCUPANT USE CASES

...
<item jid=’coven@chat.shakespeare.lit’

name=’secondwitch ’/>
...

If this information is private, the userMUST return an empty <query/> element, in accordance
with XEP-0030.

7 Occupant Use Cases

The main actor in a multi-user chat environment is the occupant, who can be said to be
located ”in” a multi-user chat room and to participate in the discussions held in that room
(for the purposes of this specification, participants and visitors are considered to be ”mere”
occupants, since they possess no administrative privileges). As will become clear, the protocol
elements proposed in this document to fulfill the occupant use cases fall into three categories:

1. the basic functionality for joining a room, exchanging messages with all occupants, etc.
(supported by the ”groupchat 1.0” protocol that preceded MUC)

2. straightforward additions to the basic functionality, such as handling of errors related
to new room types

3. additional protocol elements to handle functionality not covered by ”groupchat 1.0”
(room invites, room passwords, extended presence related to room roles and affilia-
tions); these are qualified by the ’http://jabber.org/protocol/muc#user’ namespace

Note: All client-generated examples herein are presented from the perspective of the service,
with the result that all stanzas received by a service contain a ’from’ attribute corresponding
to the sender’s full JID as added by a normal XMPP router or session manager. In addition,
normal IQ result stanzas sent upon successful completion of a request (as required by RFC
3920 11) are not shown.

7.1 Order of Events

The order of events involved in joining a room needs to be consistent so that clients can know
which events to expect when. After a client sends presence to join a room, the MUC service
MUST send it events in the following order:

11RFC 3920: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/
rfc3920>.

20

http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3920

7 OCCUPANT USE CASES

1. In-room presence from other occupants

2. In-room presence from the joining entity itself (so-called ”self-presence”)

3. Room history (if any)

4. The room subject (if any)

5. Live messages, presence updates, new user joins, etc.

7.2 Entering a Room

7.2.1 Groupchat 1.0 Protocol

In order to participate in the discussions held in a multi-user chat room, a user MUST first
become an occupant by entering the room. In the old ”groupchat 1.0” protocol, this was done
by sending presence to <room@service/nick>, where ”room” is the room ID, ”service” is the
hostname of the chat service, and ”nick” is the user’s desired nickname within the room:

Listing 16: User Seeks to Enter a Room (Groupchat 1.0)
<presence

from=’hag66@shakespeare.lit/pda’
to=’coven@chat.shakespeare.lit/thirdwitch ’/>

In this example, a user with a full JID of ”hag66@shakespeare.lit/pda” has requested to
enter the room ”coven” on the ”chat.shakespeare.lit” chat service with a room nickname of
”thirdwitch”.
If the user does not specify a room nickname, the service MUST return a <jid-malformed/>
error:

Listing 17: No Nickname Specified
<presence

from=’coven@chat.shakespeare.lit’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<error type=’modify ’>
<jid -malformed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</presence >

7.2.2 Basic MUC Protocol

Compliant multi-user chat services MUST accept the foregoing as a request to enter a
room from any client that knows either the ”groupchat 1.0” (GC) protocol or the multi-
user chat (MUC) protocol; however, MUC clients SHOULD signal their ability to speak the

21

7 OCCUPANT USE CASES

MUC protocol by including in the initial presence stanza an empty <x/> element qualified
by the ’http://jabber.org/protocol/muc’ namespace (note the absence of the ’#user’ fragment):

Listing 18: User Seeks to Enter a Room (Multi-User Chat)
<presence

from=’hag66@shakespeare.lit/pda’
to=’coven@chat.shakespeare.lit/thirdwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
</presence >

Note: If an error occurs in relation to joining a room, the service SHOULD include the MUC
child element (i.e., <x xmlns=’http://jabber.org/protocol/muc’/>) in the <presence/> stanza
of type ”error”.
Before attempting to enter the room, a MUC-compliant client SHOULD first discover its re-
served room nickname (if any) by following the protocol defined in the Discovering Reserved
Room Nickname section of this document.

7.2.3 Presence Broadcast

If the service is able to add the user to the room, it MUST send presence from all the existing
occupants’ room JIDs to the new occupant’s full JID, including extended presence information
about roles in a single <x/> element qualified by the ’http://jabber.org/protocol/muc#user’
namespace and containing an <item/> child with the ’role’ attribute set to a value of ”moder-
ator”, ”participant”, or ”visitor”, and with the ’affiliation’ attribute set to a value of ”owner”,
”admin”, ”member”, or ”none” as appropriate. 12

Listing 19: Service Sends Presence from Existing Occupants to New Occupant
<presence

from=’coven@chat.shakespeare.lit/firstwitch ’
to=’hag66@shakespeare.lit/pda’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’owner’ role=’moderator ’/>

</x>
</presence >

<presence
from=’coven@chat.shakespeare.lit/secondwitch ’
to=’hag66@shakespeare.lit/pda’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’admin’ role=’moderator ’/>

</x>
</presence >

12The <presence/> element MUST NOT include more than once instance of the <x/> qualified by the
’http://jabber.org/protocol/muc#user’ namespace.

22

7 OCCUPANT USE CASES

In this example, the user from the previous example has entered the room, by which time two
other people had already entered the room: a user with a room nickname of ”firstwitch” (who
is a room owner) and a user with a room nickname of ”secondwitch” (who is a room admin).
The service MUST also send presence from the new occupant’s room JID to the full JIDs of all
the occupants (including the new occupant).

Listing 20: Service Sends New Occupant’s Presence to All Occupants
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’ role=’participant ’/>

</x>
</presence >

<presence
from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’wiccarocks@shakespeare.lit/laptop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’ role=’participant ’/>

</x>
</presence >

<presence
from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’hag66@shakespeare.lit/pda’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’ role=’participant ’/>
<status code=’110’/>

</x>
</presence >

In this example, initial room presence is being sent from the new occupant (thirdwitch) to all
occupants, including the new occupant. As shown in the last stanza, the presence sent by the
room to a user from itself as an occupant SHOULD include a status code of 110 so that the user
knows this presence refers to itself as an occupant.
The service MAY rewrite the new occupant’s roomnick (e.g., if roomnicks are locked down).
If the service does not accept the new occupant’s requested roomnick but instead assigns a
new roomnick, it MUST include a status code of ”210” in the presence broadcast that it sends
to the new occupant.

Listing 21: Service Sends New Occupant’s Presence to New Occupant
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’hag66@shakespeare.lit/pda’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>

23

7 OCCUPANT USE CASES

<item affiliation=’member ’ role=’participant ’/>
<status code=’110’/>
<status code=’210’/>

</x>
</presence >

Note: The order of the presence stanzas sent to the new occupant is important. The service
MUST first send the complete list of the existing occupants to the new occupant and only
then send the new occupant’s own presence to the new occupant. This helps the client know
when it has received the complete ”room roster”.
After sending the presence broadcast (and only after doing so), the service may then send
discussion history, live messages, presence updates, and other in-room traffic.

7.2.4 Default Roles

The following table summarizes the initial default roles that a service should set based on the
user’s affiliation (there is no role associated with the ”outcast” affiliation, since such users are
not allowed to enter the room).

Room Type None Member Admin Owner
Moderated Visitor Participant Moderator Moderator
Unmoderated Participant Participant Moderator Moderator
Members-Only N/A * Participant Moderator Moderator
Open Participant Participant Moderator Moderator

* Entry is not permitted.

7.2.5 Non-Anonymous Rooms

If the room is non-anonymous, the service MUST send the new occupant’s full JID to
all occupants using extended presence information in an <x/> element qualified by the
’http://jabber.org/protocol/muc#user’ namespace and containing an <item/> child with a
’jid’ attribute specifying the occupant’s full JID:

Listing 22: Service Sends Full JID to All Occupants
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’none’

jid=’hag66@shakespeare.lit/pda’
role=’participant ’/>

</x>

24

7 OCCUPANT USE CASES

</presence >

[...]

If the user is entering a room that is non-anonymous (i.e., which informs all occupants of
each occupant’s full JID as shown above), the service SHOULD allow the user to enter the
room but MUST also warn the user that the room is not anonymous. This SHOULD be done by
including a status code of ”100” in the initial presence that the roomsends to thenewoccupant:

Listing 23: Service Sends New Occupant’s Presence to New Occupant
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’hag66@shakespeare.lit/pda’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’ role=’participant ’/>
<status code=’100’/>
<status code=’110’/>
<status code=’210’/>

</x>
</presence >

However, it MAY be done by sending a message of type ”groupchat” to the new occupant
containing an <x/> child with a <status/> element that has the ’code’ attribute set to a value
of ”100”:

Listing 24: Service Warns New Occupant About Lack of Anonymity
<message

from=’coven@chat.shakespeare.lit’
to=’hag66@shakespeare.lit/pda’
type=’groupchat ’>

<body>This room is not anonymous.</body>
<x xmlns=’http: // jabber.org/protocol/muc#user’>

<status code=’100’/>
</x>

</message >

The inclusion of the status code assists clients in presenting their own notification messages
(e.g., information appropriate to the user’s locality).

7.2.6 Semi-Anonymous Rooms

If the room is semi-anonymous, the service MUST send presence from the new occupant to all
occupants as specified above, but MUST include the new occupant’s full JID only in the pres-
ence notifications it sends to occupants with a role of ”moderator” and not to non-moderator
occupants.

25

7 OCCUPANT USE CASES

(Note: All subsequent examples include the ’jid’ attribute for each <item/> element, even
though this information is not sent to non-moderators in semi-anonymous rooms.)

7.2.7 Password-Protected Rooms

If the room requires a password and the user did not supply one (or the password provided
is incorrect), the service MUST deny access to the room and inform the user that they
are unauthorized; this is done by returning a presence stanza of type ”error” specifying a
<not-authorized/> error:

Listing 25: Service Denies Access Because No Password Provided
<presence

from=’coven@chat.shakespeare.lit’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
<error type=’auth’>

<not -authorized xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</presence >

Passwords SHOULD be supplied with the presence stanza sent when entering the room, con-
tained within an <x/> element qualified by the ’http://jabber.org/protocol/muc’ namespace
and containing a <password/> child. Passwords are to be sent as cleartext; no other authen-
tication methods are supported at this time, and any such authentication or authorization
methods shall be defined in a separate specification (see the Security Considerations section
of this document).

Listing 26: User Provides Password On Entering a Room
<presence

from=’hag66@shakespeare.lit/pda’
to=’coven@chat.shakespeare.lit/thirdwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc’>
<password >cauldronburn </password >

</x>
</presence >

7.2.8 Members-Only Rooms

If the room is members-only but the user is not on the member list, the service MUST deny
access to the room and inform the user that they are not allowed to enter the room; this is
done by returning a presence stanza of type ”error” specifying a <registration-required/>
error condition:

26

7 OCCUPANT USE CASES

Listing 27: Service Denies Access Because User Is Not on Member List
<presence

from=’coven@chat.shakespeare.lit’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
<error type=’auth’>

<registration -required xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’
/>

</error >
</presence >

7.2.9 Banned Users

If the user has been banned from the room (i.e., has an affiliation of ”outcast”), the service
MUST deny access to the room and inform the user of the fact that he or she is banned; this is
done by returning a presence stanza of type ”error” specifying a <forbidden/> error condition:

Listing 28: Service Denies Access Because User is Banned
<presence

from=’coven@chat.shakespeare.lit’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
<error type=’auth’>

<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</presence >

7.2.10 Nickname Conflict

If the room already contains another user with the nickname desired by the user seeking
to enter the room (or if the nickname is reserved by another user on the member list), the
service MUST deny access to the room and inform the user of the conflict; this is done by
returning a presence stanza of type ”error” specifying a <conflict/> error condition:

Listing 29: Service Denies Access Because of Nick Conflict
<presence

from=’coven@chat.shakespeare.lit’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
<error type=’cancel ’>

<conflict xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

27

7 OCCUPANT USE CASES

</error >
</presence >

However, if the bare JID <localpart@domain.tld> of the present occupant matches the bare
JID of the user seeking to enter the room, then the service SHOULD allow entry to the user,
so that the user has two (or more) in-room ”sessions” with the same roomnick, one for each
resource. If a service allows more than one occupant with the same bare JID and the same
room nickname, it SHOULD route in-room messages to all of the user’s resources and allow
all of the user’s resources to send messages to the room; it is up to the implementation
to determine how to appropriately handle presence from the user’s resources and how to
route private messages to all or only one resource (based on presence priority or some other
algorithm).
How nickname conflicts are determined is up to the implementation (e.g., whether the service
applies a case folding routine, a stringprep profile such as Resourceprep or Nodeprep, etc.).

7.2.11 Max Users

If the room has reached its maximum number of occupants, the service SHOULD deny access
to the room and inform the user of the restriction; this is done by returning a presence stanza
of type ”error” specifying a <service-unavailable/> error condition:

Listing 30: Service Informs User that Room Occupant Limit Has Been Reached
<presence

from=’coven@chat.shakespeare.lit’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
<error type=’wait’>

<service -unavailable xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</presence >

Alternatively, the room could kick an ”idle user” in order to free up space.
If the room has reached its maximum number of occupants and a room admin or owner
attempts to join, the room SHOULD allow the admin or owner to join, up to some reasonable
number of additional occupants, which number MAY be configurable.

7.2.12 Locked Room

If a user attempts to enter a roomwhile it is ”locked” (i.e., before the room creator provides an
initial configuration and therefore before the room officially exists), the service MUST refuse
entry and return an <item-not-found/> error to the user:

28

7 OCCUPANT USE CASES

Listing 31: Service Denies Access Because Room Does Not Exist
<presence

from=’coven@chat.shakespeare.lit’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
<error type=’cancel ’>

<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</presence >

7.2.13 Nonexistent Room

If the room does not already exist when the user seeks to enter it, the service SHOULD create
it; however, this is not required, since an implementation or deployment MAY choose to
restrict the privilege of creating rooms. For details, see the Creating a Room section of this
document.

7.2.14 Room Logging

If the user is entering a room in which the discussions are logged to a public archive (often
accessible via HTTP), the service SHOULD allow the user to enter the room but MUST also
warn the user that the discussions are logged. This SHOULD be done by including a status
code of ”170” in the initial presence that the room sends to the new occupant:

Listing 32: Service Sends New Occupant’s Presence to New Occupant
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’hag66@shakespeare.lit/pda’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’ role=’participant ’/>
<status code=’100’/>
<status code=’110’/>
<status code=’170’/>
<status code=’210’/>

</x>
</presence >

7.2.15 Discussion History

After sending initial presence as shown above, a roomMAY send discussion history to the new
occupant. (The room MUST NOT send any discussion history before it finishes sending room
presence as specified in the Presence Broadcast section of this document.) Whether such

29

7 OCCUPANT USE CASES

history is sent, and howmany messages comprise the history, shall be determined by the chat
service implementation or specific deployment.

Listing 33: Delivery of Discussion History
<message

from=’coven@chat.shakespeare.lit/firstwitch ’
to=’hecate@shakespeare.lit/broom’
type=’groupchat ’>

<body>Thrice the brinded cat hath mew’d.</body >
␣␣<delay␣xmlns=’urn:xmpp:delay ’
␣␣␣␣␣from=’crone1@shakespeare.lit/desktop ’
␣␣␣␣␣stamp=’2002 -10 -13 T23:58:37Z ’/>
</message >

<message
␣␣␣␣from=’coven@chat.shakespeare.lit/secondwitch ’
␣␣␣␣to=’hecate@shakespeare.lit/broom’
␣␣␣␣type=’groupchat ’>
␣␣<body >Thrice␣and␣once␣the␣hedge -pig␣whined.</body >
␣␣<delay␣xmlns=’urn:xmpp:delay ’
␣␣␣␣␣from=’wiccarocks@shakespeare.lit/laptop ’
␣␣␣␣␣stamp=’2002 -10 -13 T23:58:43Z ’/>
</message >

<message
␣␣␣␣from=’coven@chat.shakespeare.lit/thirdwitch ’
␣␣␣␣to=’hecate@shakespeare.lit/broom’
␣␣␣␣type=’groupchat ’>
␣␣<body >Harpier␣cries␣’Tis time , ’tis␣time.</body >
␣␣<delay␣xmlns=’urn:xmpp:delay ’
␣␣␣␣␣from=’hag66@shakespeare.lit/pda’
␣␣␣␣␣stamp=’2002 -10 -13 T23:58:49Z ’/>
</message >

Discussion history messages MUST be stamped with Delayed Delivery 13 information qualified
by the ’urn:xmpp:delay’ namespace to indicate that they are sent with delayed delivery and to
specify the times at which they were originally sent. (Note: The ’urn:xmpp:delay’ namespace
defined in XEP-0203 supersedes the older ’jabber:x:delay’ namespace defined in Legacy
Delayed Delivery 14; until the status of XEP-0091 is changed to Obsolete, implementations
SHOULD include both datetime formats.) The ’from’ attribute SHOULD be the full JID of the
original sender in non-anonymous rooms, but MUST NOT be in semi-anonymous rooms
(where the ’from’ attribute SHOULD be set to the JID of the room itself). The service SHOULD
send all discussion history messages before delivering any ”live” messages sent after the user
enters the room.

13XEP-0203: Delayed Delivery <http://xmpp.org/extensions/xep-0203.html>.
14XEP-0091: Legacy Delayed Delivery <http://xmpp.org/extensions/xep-0091.html>.

30

http://xmpp.org/extensions/xep-0203.html
http://xmpp.org/extensions/xep-0091.html
http://xmpp.org/extensions/xep-0091.html
http://xmpp.org/extensions/xep-0203.html
http://xmpp.org/extensions/xep-0091.html

7 OCCUPANT USE CASES

7.2.16 Managing Discussion History

A user MAY want to manage the amount of discussion history provided on entering a room
(perhaps because the user is on a low-bandwidth connection or is using a small-footprint
client). This MUST be accomplished by including a <history/> child in the initial presence
stanza sent when joining the room. There are four allowable attributes for this element:

Attribute Datatype Meaning
maxchars int Limit the total number of characters

in the history to ”X” (where the
character count is the characters of
the complete XML stanzas, not only
their XML character data).

maxstanzas int Limit the total number of messages
in the history to ”X”.

seconds int Send only the messages received in
the last ”X” seconds.

since dateTime Send only the messages received
since the datetime specified (which
MUST conform to the DateTime
profile specified in XMPP Date and
Time Profiles XEP-0082: XMPP Date
and Time Profiles
<http://xmpp.org/extensions/xep-
0082.html>.).

The service MUST send the smallest amount of traffic that meets any combination of the
above criteria, taking into account service-level and room-level defaults. The service MUST
send completemessage stanzas only (i.e., it MUST not literally truncate the history at a certain
number of characters, but MUST send the largest number of complete stanzas that results in a
number of characters less than or equal to the ’maxchars’ value specified). If the client wishes
to receive no history, it MUST set the ’maxchars’ attribute to a value of ”0” (zero).
The following examples illustrate the use of this protocol.

Listing 34: User Requests Limit on Number of Messages in History
<presence

from=’hag66@shakespeare.lit/pda’
to=’coven@chat.shakespeare.lit/thirdwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc’>
<history maxstanzas=’20’/>

</x>
</presence >

31

7 OCCUPANT USE CASES

Listing 35: User Requests History in Last 3 Minutes
<presence

from=’hag66@shakespeare.lit/pda’
to=’coven@chat.shakespeare.lit/thirdwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc’>
<history seconds=’180’/>

</x>
</presence >

Listing 36: User Requests All History Since the Beginning of the Unix Era
<presence

from=’hag66@shakespeare.lit/pda’
to=’coven@chat.shakespeare.lit/thirdwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc’>
<history since=’1970 -01 -01 T00:00:00Z ’/>

</x>
</presence >

Obviously the service SHOULD NOT return all messages sent in the room since the beginning
of the Unix era, and SHOULD appropriately limit the amount of history sent to the user based
on service or room defaults.

Listing 37: User Requests No History
<presence

from=’hag66@shakespeare.lit/pda’
to=’coven@chat.shakespeare.lit/thirdwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc’>
<history maxchars=’0’/>

</x>
</presence >

7.3 Exiting a Room

In order to exit a multi-user chat room, an occupant sends a presence stanza of type ”unavail-
able” to the <room@service/nick> it is currently using in the room.

Listing 38: Occupant Exits a Room
<presence

from=’hag66@shakespeare.lit/pda’
to=’coven@chat.shakespeare.lit/thirdwitch ’
type=’unavailable ’/>

The service MUST then send presence stanzas of type ”unavailable” from the departing
occupant’s room JID to the full JIDs of the departing occupant and of the remaining occupants:

32

7 OCCUPANT USE CASES

Listing 39: Service Sends Presence Related to Departure of Occupant
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’hag66@shakespeare.lit/pda’
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’ role=’none’/>
<status code=’110’/>

</x>
</presence >
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’ role=’none’/>

</x>
</presence >
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’wiccarocks@shakespeare.lit/laptop ’
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’ role=’none’/>

</x>
</presence >

Presence stanzas of type ”unavailable” reflected by the room MUST contain extended pres-
ence information about roles and affiliations; the ’role’ attribute SHOULD be set to a value of
”none” to denote that the individual is no longer an occupant.
The occupant MAY include normal <status/> information in the unavailable presence stanzas;
this enables the occupant to provide a custom exit message if desired:

Listing 40: Custom Exit Message
<presence

from=’wiccarocks@shakespeare.lit/laptop ’
to=’coven@chat.shakespeare.lit/oldhag ’
type=’unavailable ’>

<status >gone where the goblins go</status >
</presence >

Normal presence stanza generation rules apply as defined in XMPP IM 15, so that if the user
sends a general unavailable presence stanza, the user’s server will broadcast that stanza to
the <room@service/nick> to which the user’s client has sent directed presence.
It is possible that a user may not be able to gracefully exit the room by sending unavailable
15RFC 3921: ExtensibleMessaging andPresence Protocol (XMPP): InstantMessaging andPresence <http://tools.

ietf.org/html/rfc3921>.

33

http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3921

7 OCCUPANT USE CASES

presence directly to the room. If the user goes offline without sending unavailable presence,
the user’s server is responsible for sending unavailable presence on behalf of the user (in
accordance with RFC 3921). If the user’s server goes offline or connectivity is lost between
the user’s server and the MUC service to which the user is connected (e.g., in federated
communications), the MUC service is responsible for monitoring error stanzas it receives in
order to determine if the user has gone offline. If the MUC service determines that the user
has gone offline, it must treat the user as if the user had itself sent unavailable presence.
Note: If the room is not persistent and this occupant is the last to exit, the service is responsi-
ble for destroying the room.

7.4 Changing Nickname

A common feature of multi-user chat rooms is the ability for an occupant to change his or her
nickname within the room. In MUC this is done by sending updated presence information
to the room, specifically by sending presence to a new room JID in the same room (changing
only the resource identifier in the room JID).

Listing 41: Occupant Changes Nickname
<presence

from=’hag66@shakespeare.lit/pda’
to=’coven@chat.shakespeare.lit/oldhag ’/>

The service then sends two presence stanzas to the full JID of each occupant (including the
occupant who is changing his or her room nickname), one of type ”unavailable” for the old
nickname and one indicating availability for the new nickname.
The unavailable presence MUST contain the following as extended presence information in
an <x/> element qualified by the ’http://jabber.org/protocol/muc#user’ namespace:

• The new nickname (in this case, nick=’oldhag’)

• A status code of 303

This enables the recipients to correlate the old roomnick with the new roomnick.

Listing 42: Service Updates Nick
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit/pda’
nick=’oldhag ’

34

7 OCCUPANT USE CASES

role=’participant ’/>
<status code=’303’/>

</x>
</presence >
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’wiccarocks@shakespeare.lit/laptop ’
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit/pda’
nick=’oldhag ’
role=’participant ’/>

<status code=’303’/>
</x>

</presence >
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’hag66@shakespeare.lit/pda’
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit/pda’
nick=’oldhag ’
role=’participant ’/>

<status code=’303’/>
<status code=’110’/>

</x>
</presence >

<presence
from=’coven@chat.shakespeare.lit/oldhag ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit/pda’
role=’participant ’/>

</x>
</presence >
<presence

from=’coven@chat.shakespeare.lit/oldhag ’
to=’wiccarocks@shakespeare.lit/laptop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit/pda’
role=’participant ’/>

</x>
</presence >
<presence

35

7 OCCUPANT USE CASES

from=’coven@chat.shakespeare.lit/oldhag ’
to=’hag66@shakespeare.lit/pda’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit/pda’
role=’participant ’/>

<status code=’110’/>
</x>

</presence >

If the user attempts to change his or her room nickname to a room nickname that is already
in use by another user (or that is reserved by another user affiliated with the room, e.g., a
member or owner), the service MUST deny the nickname change request and inform the
user of the conflict; this is done by returning a presence stanza of type ”error” specifying a
<conflict/> error condition:

Listing 43: Service Denies Nickname Change Because of Nick Conflict
<presence

from=’coven@chat.shakespeare.lit’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
<error type=’cancel ’>

<conflict xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</presence >

However, if the bare JID <localpart@domain.tld> of the present occupant matches the bare JID
of the user seeking to change his or her nickname, then the service MAY allow the nickname
change. See the Nickname Conflict section of this document for details.
If the user attempts to change his or her room nickname but room nicknames are ”locked
down”, the service MUST deny the nickname change request and return a presence stanza of
type ”error” specifying a <not-acceptable/> error condition:

Listing 44: Service Denies Nickname Change Because Roomnicks Are Locked Down
<presence

from=’coven@chat.shakespeare.lit’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
<error type=’cancel ’>

<not -acceptable xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</presence >

36

7 OCCUPANT USE CASES

The user SHOULD then discover its reserved nickname as specified in the Discovering Reserved
Room Nickname section of this document.

7.5 Changing Availability Status

In multi-user chat systems such as IRC, one common use for changing one’s room nickname
is to indicate a change in one’s availability (e.g., changing one’s room nickname to ”third-
witch|away”). In XMPP, availability is of course noted by a change in presence (specifically the
<show/> and <status/> elements), which can provide important context within a chatroom.
An occupant changes availability status within the room by sending the updated presence to
its <room@service/nick>.

Listing 45: Occupant Changes Availability Status
<presence

from=’wiccarocks@shakespeare.lit/laptop ’
to=’coven@chat.shakespeare.lit/oldhag ’>

<show>xa</show>
<status >gone where the goblins go</status >

</presence >

The service then sends a presence stanza from the occupant changing his or her presence to
the full JID of each occupant, including extended presence information about the occupant’s
role and full JID to those with privileges to view such information:

Listing 46: Service Passes Along Changed Presence to All Occupants
<presence

from=’coven@chat.shakespeare.lit/secondwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<show>xa</show>
<status >gone where the goblins go</status >
<x xmlns=’http: // jabber.org/protocol/muc#user’>

<item affiliation=’admin’
jid=’wiccarocks@shakespeare.lit/laptop ’
role=’moderator ’/>

</x>
</presence >

[...]

37

7 OCCUPANT USE CASES

7.6 Inviting Another User to a Room

7.6.1 Direct Invitation

A method for sending a direct invitation (not mediated by the room itself) is defined in Direct
MUC Invitations 16. Sending the invitation directly can help to work around communications
blocking on the part of the invitee (which might refuse communication with entities not in its
roster).

7.6.2 Mediated Invitation

It can be useful to invite another user to a room in which one is an occupant. To do this, a
MUC client MUST send XML of the following form to the <room@service> itself (the reason is
OPTIONAL and the message MUST be explicitly or implicitly of type ”normal”):

Listing 47: Occupant Sends an Invitation by Way of Room
<message

from=’crone1@shakespeare.lit/desktop ’
to=’coven@chat.shakespeare.lit’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<invite to=’hecate@shakespeare.lit’>

<reason >
Hey Hecate , this is the place for all good witches!

</reason >
</invite >

</x>
</message >

The <room@service> itself MUST then add a ’from’ address to the <invite/> element whose
value is the bare JID, full JID, or room JID of the invitor and send the invitation to the invitee
specified in the ’to’ address (the service MAY include a message body explaining the invitation
or containing the reason, for the sake of older clients; in addition, the room SHOULD add the
password if the room is password-protected):

Listing 48: Room Sends Invitation to Invitee on Behalf of Invitor
<message

from=’coven@chat.shakespeare.lit’
to=’hecate@shakespeare.lit’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<invite from=’crone1@shakespeare.lit/desktop ’>

<reason >
Hey Hecate , this is the place for all good witches!

</reason >

16XEP-0249: Direct MUC Invitations <http://xmpp.org/extensions/xep-0249.html>.

38

http://xmpp.org/extensions/xep-0249.html
http://xmpp.org/extensions/xep-0249.html
http://xmpp.org/extensions/xep-0249.html

7 OCCUPANT USE CASES

</invite >
<password >cauldronburn </password >

</x>
</message >

If the room is members-only, the service MAY also add the invitee to the member list. (Note:
Invitation privileges in members-only rooms SHOULD be restricted to room admins; if a
member without privileges to edit the member list attempts to invite another user, the
service SHOULD return a <forbidden/> error to the occupant; for details, see the Modifying
the Member List section of this document.)
If the invitor supplies a non-existent JID, the room SHOULD return an <item-not-found/>
error to the invitor.
The invitee MAY choose to formally decline (as opposed to ignore) the invitation; and this is
something that the sender may want to be informed about. In order to decline the invitation,
the invitee MUST send a message of the following form to the <room@service> itself:

Listing 49: Invitee Declines Invitation
<message

from=’hecate@shakespeare.lit/broom ’
to=’coven@chat.shakespeare.lit’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<decline to=’crone1@shakespeare.lit’>

<reason >
Sorry , I’m␣too␣busy␣right␣now.

␣␣␣␣␣␣ </reason >
␣␣␣␣</decline >
␣␣</x>
</message >

Listing 50: Room Informs Invitor that Invitation Was Declined
<message

from=’coven@chat.shakespeare.lit’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<decline from=’hecate@shakespeare.lit’>

<reason >
Sorry , I’m␣too␣busy␣right␣now.

␣␣␣␣␣␣ </reason >
␣␣␣␣</decline >
␣␣</x>
</message >

It may be wondered why the invitee does not send the decline message directly to the invitor.
The main reason is that certain implementations MAY choose to base invitations on room JIDs
rather than bare JIDs (so that, for example, an occupant could invite someone from one room
to another without knowing that person’s bare JID). Thus the service MUST handle both the

39

7 OCCUPANT USE CASES

invites and declines.

7.7 Converting a One-to-One Chat Into a Multi-User Conference

Sometimes it is desirable to convert a one-to-one chat into a multi-user conference. The
process flow is shown in the following examples.
First, two users begin a one-to-one chat.

Listing 51: A One-to-One Chat
<message

from=’crone1@shakespeare.lit/desktop ’
to=’wiccarocks@shakespeare.lit/laptop ’
type=’chat’>

<thread >e0ffe42b28561960c6b12b944a092794b9683a38 </thread >
<body>Thrice the brinded cat hath mew’d.</body >

</message >

<message
␣␣␣␣from=’wiccarocks@shakespeare.lit/laptop ’
␣␣␣␣to=’crone1@shakespeare.lit/desktop ’
␣␣␣␣type=’chat’>
␣␣<thread >e0ffe42b28561960c6b12b944a092794b9683a38 </thread >
␣␣<body >Thrice␣and␣once␣the␣hedge -pig␣whined.</body >
</message >

Now the first person decides to include a third person in the discussion, so she (or, more
precisely, her client) does the following:

1. Creates a new multi-user chatroom

2. Optionally sends history of the one-to-one chat to the room

3. Sends an invitation to the second person and the third person, including a <continue/>
element (optionally including a ’thread’ attribute).

Note: The new room SHOULD be non-anonymous, MAY be an instant room as specified in
the Creating an Instant Room section of this document, and MAY have a unique room name
received from the service as specified in the Requesting a Unique Room Name section of this
document.
Note: If the one-to-one chat messages included a <thread/> element, the person who creates
the room SHOULD include the ThreadID with the history messages, specify the ThreadID in
the invitations as the value of the <continue/> element’s ’thread’ attribute, and include the
ThreadID in any new messages sent to the room. Use of ThreadIDs is RECOMMENDED because
it helps to provide continuity between the one-to-one chat and the multi-user chat.

40

7 OCCUPANT USE CASES

Listing 52: Continuing the Discussion I: User Creates Room
<presence

from=’crone1@shakespeare.lit/desktop ’
to=’coven@chat.shakespeare.lit/firstwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
</presence >

<presence
from=’coven@chat.shakespeare.lit/firstwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’owner’ role=’moderator ’/>
<status code=’110’/>

</x>
</presence >

Listing 53: Continuing the Discussion II: Owner Sends History to Room
<message

from=’crone1@shakespeare.lit/desktop ’
to=’coven@chat.shakespeare.lit’
type=’groupchat ’>

<thread >e0ffe42b28561960c6b12b944a092794b9683a38 </thread >
<body>Thrice the brinded cat hath mew’d.</body >

␣␣<delay␣xmlns=’urn:xmpp:delay ’
␣␣␣␣␣from=’crone1@shakespeare.lit/desktop ’
␣␣␣␣␣stamp=’2004 -09 -29 T01:54:37Z ’/>
</message >

<message
␣␣␣␣from=’crone1@shakespeare.lit/desktop ’
␣␣␣␣to=’coven@chat.shakespeare.lit’
␣␣␣␣type=’groupchat ’>
␣␣<thread >e0ffe42b28561960c6b12b944a092794b9683a38 </thread >
␣␣<body >Thrice␣and␣once␣the␣hedge -pig␣whined.</body >
␣␣<delay␣xmlns=’urn:xmpp:delay ’
␣␣␣␣␣from=’wiccarocks@shakespeare.lit/laptop ’
␣␣␣␣␣stamp=’2004 -09 -29 T01:55:21Z ’/>
</message >

Note: Use of the Delayed Delivery protocol enables the room creator to specify the datetime
of each message from the one-to-one chat history (via the ’stamp’ attribute), as well as the JID
of the original sender of each message (via the ’from’ attribute). The room creator SHOULD
send the complete one-to-one chat history before inviting additional users to the room, and
SHOULD also send as history any messages appearing in the one-to-one chat interface after
joining the room and before the second person joins the room; if the one-to-one history is
especially large, the sending client may want to send the history over a few seconds rather
than all at once (to avoid triggering rate limits). The service SHOULD NOT add its own delay

41

7 OCCUPANT USE CASES

elements (as described in the Discussion History section of this document) to prior chat
history messages received from the room owner.

Listing 54: Continuing the Discussion III: Owner Sends Invitations, Including Continue Flag
<message

from=’crone1@shakespeare.lit/desktop ’
to=’coven@chat.shakespeare.lit’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<invite to=’wiccarocks@shakespeare.lit/laptop ’>

<reason >This coven needs both wiccarocks and hag66.</reason >
<continue thread=’e0ffe42b28561960c6b12b944a092794b9683a38 ’/>

</invite >
<invite to=’hag66@shakespeare.lit’>

<reason >This coven needs both wiccarocks and hag66.</reason >
<continue thread=’e0ffe42b28561960c6b12b944a092794b9683a38 ’/>

</invite >
</x>

</message >

Note: Since the invitor’s client knows the full JID of the person with whom the invitor was
having a one-to-one chat, it SHOULD include the full JID (rather than the bare JID) in the
invitation.
The invitations are delivered to the invitees:

Listing 55: Invitations Delivered
<message

from=’coven@chat.shakespeare.lit’>
to=’wiccarocks@shakespeare.lit/laptop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<invite from=’crone1@shakespeare.lit’>

<reason >This coven needs both wiccarocks and hag66.</reason >
<continue thread=’e0ffe42b28561960c6b12b944a092794b9683a38 ’/>

</invite >
</x>

</message >

<message
from=’coven@chat.shakespeare.lit’>
to=’hag66@shakespeare.lit’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<invite from=’crone1@shakespeare.lit’>

<reason >This coven needs both wiccarocks and hag66.</reason >
<continue thread=’e0ffe42b28561960c6b12b944a092794b9683a38 ’/>

</invite >
</x>

</message >

42

7 OCCUPANT USE CASES

When the client being used by <wiccarocks@shakespeare.lit/laptop> receives the invitation, it
SHOULD auto-join the room or prompt the user whether to join (subject to user preferences)
and then seamlessly convert the existing one-to-one chat window into a multi-user confer-
encing window:

Listing 56: Invitee Accepts Invitation, Joins Room, and Receives Presence and History
<presence

from=’wiccarocks@shakespeare.lit/laptop ’
to=’coven@chat.shakespeare.lit/secondwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
</presence >

<presence
from=’coven@chat.shakespeare.lit/firstwitch ’
to=’wiccarocks@shakespeare.lit/laptop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’owner’ role=’moderator ’/>

</x>
</presence >

<presence
from=’coven@chat.shakespeare.lit/secondwitch ’
to=’wiccarocks@shakespeare.lit/laptop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’ role=’participant ’/>

</x>
</presence >

<message
from=’coven@chat.shakespeare.lit’
to=’wiccarocks@shakespeare.lit/laptop ’
type=’groupchat ’>

<thread >e0ffe42b28561960c6b12b944a092794b9683a38 </thread >
<body>Thrice the brinded cat hath mew’d.</body >

␣␣<delay␣xmlns=’urn:xmpp:delay ’
␣␣␣␣␣from=’crone1@shakespeare.lit/desktop ’
␣␣␣␣␣stamp=’2004 -09 -29 T01:54:37Z ’/>
</message >

<message
␣␣␣␣from=’coven@chat.shakespeare.lit’
␣␣␣␣to=’wiccarocks@shakespeare.lit/laptop ’
␣␣␣␣type=’groupchat ’>
␣␣<thread >e0ffe42b28561960c6b12b944a092794b9683a38 </thread >
␣␣<body >Thrice␣and␣once␣the␣hedge -pig␣whined.</body >
␣␣<delay␣xmlns=’urn:xmpp:delay ’
␣␣␣␣␣from=’wiccarocks@shakespeare.lit/laptop ’
␣␣␣␣␣stamp=’2004 -09 -29 T01:55:21Z ’/>

43

7 OCCUPANT USE CASES

</message >

Note: The fact that the messages come from the <room@service> itself rather than
<room@service/nick> is a clue to the receiving client that these messages are prior chat
history, since any message from a room occupant will have a ’from’ address equal to the
sender’s room JID.

7.8 Occupant Modification of the Room Subject

If allowed in accordance with room configuration, a mere occupant MAY be allowed to change
the subject in a room. For details, see theModifying theRoomSubject section of this document.

7.9 Sending a Private Message

Since each occupant has a unique room JID, an occupant MAY send a ”private message” to
a selected occupant via the service by sending a message to the occupant’s room JID. The
message type SHOULD be ”chat” and MUST NOT be ”groupchat”, but MAY be left unspecified
(i.e., a normal message). This privilege SHOULD be allowed to any occupant (even a visitor in
a moderated room).

Listing 57: Occupant Sends Private Message
<message

from=’wiccarocks@shakespeare.lit/laptop ’
to=’coven@chat.shakespeare.lit/firstwitch ’
type=’chat’>

<body>I’ll␣give␣thee␣a␣wind.</body >
</message >

The service is responsible for changing the ’from’ address to the sender’s room JID and
delivering the message to the intended recipient’s full JID.

Listing 58: Recipient Receives the Private Message
<message

from=’coven@chat.shakespeare.lit/secondwitch ’
to=’crone1@shakespeare.lit/desktop ’
type=’chat’>

<body>I’ll␣give␣thee␣a␣wind.</body >
</message >

If the sender attempts to send a private message of type ”groupchat” to a particular occupant,
the service MUST refuse to deliver the message (since the recipient’s client would expect
in-roommessages to be of type ”groupchat”) and return a <bad-request/> error to the sender:

44

7 OCCUPANT USE CASES

Listing 59: Occupant Attempts to Send aMessage of Type ”Groupchat” to a Particular Occupant
<message

from=’wiccarocks@shakespeare.lit/laptop ’
to=’coven@chat.shakespeare.lit/firstwitch ’
type=’groupchat ’>

<body>I’ll␣give␣thee␣a␣wind.</body >
</message >

<message
␣␣␣␣from=’coven@chat.shakespeare.lit’
␣␣␣␣to=’wiccarocks@shakespeare.lit/laptop ’
␣␣␣␣type=’error ’>
␣␣<body >I’ll give thee a wind.</body>

<error type=’modify ’>
<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</message >

If the sender attempts to send a private message to a room JID that does not exist, the service
MUST return an <item-not-found/> error to the sender.
If the sender is not an occupant of the room in which the intended recipient is visiting, the
service MUST return a <not-acceptable/> error to the sender.

7.10 Sending a Message to All Occupants

An occupant sends a message to all other occupants in the room by sending a message of type
”groupchat” to the <room@service> itself (a service MAY ignore or reject messages that do
not have a type of ”groupchat”). In a moderated room, this privilege is restricted to occupants
with a role of participant or higher.

Listing 60: Occupant Sends a Message to All Occupants
<message

from=’hag66@shakespeare.lit/pda’
to=’coven@chat.shakespeare.lit’
type=’groupchat ’>

<body>Harpier cries: ’tis␣time ,␣’tis time.</body>
</message >

If the sender has voice in the room (this is the default except in moderated rooms), the service
MUST change the ’from’ attribute to the sender’s room JID and reflect the message out to the
full JID of each occupant.

Listing 61: Service Reflects Message to All Occupants
<message

45

7 OCCUPANT USE CASES

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’
type=’groupchat ’>

<body>Harpier cries: ’tis␣time ,␣’tis time.</body>
</message >
<message

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’wiccarocks@shakespeare.lit/laptop ’
type=’groupchat ’>

<body>Harpier cries: ’tis␣time ,␣’tis time.</body>
</message >
<message

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’hag66@shakespeare.lit/pda’
type=’groupchat ’>

<body>Harpier cries: ’tis␣time ,␣’tis time.</body>
</message >

If the sender is a visitor (i.e., does not have voice in a moderated room), the service MAY
return a <forbidden/> error to the sender and MUST NOT reflect the message to all occupants.
If the sender is not an occupant of the room, the service SHOULD return a <not-acceptable/>
error to the sender and SHOULD NOT reflect the message to all occupants; the only exception
to this rule is that an implementation MAY allow users with certain privileges (e.g., a room
owner, room admin, or service-level admin) to send messages to the room even if those users
are not occupants.

7.11 Registering with a Room

An implementation MAY allow an unaffiliated user (in a moderated room, normally a par-
ticipant) to register with a room and thus become a member of the room (conversely, an
implementationMAY restrict this privilege and allow only room admins to add newmembers).
In particular, it is not possible to join a members-only room without being on the member
list, so an entity may need to request membership in order to join such a room.
If allowed, this functionality SHOULD be implemented by enabling a user to send a request
for registration requirements to the room qualified by the ’jabber:iq:register’ namespace as
described in In-Band Registration 17:

Listing 62: User Requests Registration Requirements
<iq from=’hag66@shakespeare.lit/pda’

id=’reg1’
to=’coven@chat.shakespeare.lit’
type=’get’>

<query xmlns=’jabber:iq:register ’/>

17XEP-0077: In-Band Registration <http://xmpp.org/extensions/xep-0077.html>.

46

http://xmpp.org/extensions/xep-0077.html
http://xmpp.org/extensions/xep-0077.html

7 OCCUPANT USE CASES

</iq>

If the user requesting registration requirements is not allowed to register with the room (e.g.,
because that privilege has been restricted), the room MUST return a <not-allowed/> error
to the user. If the user is already registered, the room MUST reply with an IQ stanza of type
”result” that contains an empty <register/> element as described in XEP-0077. If the room
does not exist, the service MUST return an <item-not-found/> error.
Otherwise, the room MUST then return a Data Form to the user (as described in Data Forms
18). The information required to register MAY vary by implementation or deployment and
is not fully specified in this document (e.g., the fields registered by this document for the
’http://jabber.org/protocol/muc#register’ FORM_TYPE may be supplemented in the future
via the mechanisms described in the Field Standardization section of this document). The
following can be taken as a fairly typical example:

Listing 63: Service Returns Registration Form
<iq from=’coven@chat.shakespeare.lit’

id=’reg1’
to=’hag66@shakespeare.lit/pda’
type=’result ’>

<query xmlns=’jabber:iq:register ’>
<instructions >

To register on the web , visit http: // shakespeare.lit/
</instructions >
<x xmlns=’jabber:x:data ’ type=’form’>

<title >Dark Cave Registration </title >
<instructions >

Please provide the following information
to register with this room.

</instructions >
<field

type=’hidden ’
var=’FORM_TYPE ’>

<value >http: // jabber.org/protocol/muc#register </value>
</field >
<field

label=’Given␣Name’
type=’text -single ’
var=’muc#register_first ’>

<required/>
</field >
<field

label=’Family␣Name’
type=’text -single ’
var=’muc#register_last ’>

<required/>

18XEP-0004: Data Forms <http://xmpp.org/extensions/xep-0004.html>.

47

http://xmpp.org/extensions/xep-0004.html
http://xmpp.org/extensions/xep-0004.html

7 OCCUPANT USE CASES

</field >
<field

label=’Desired␣Nickname ’
type=’text -single ’
var=’muc#register_roomnick ’>

<required/>
</field >
<field

label=’Your␣URL’
type=’text -single ’
var=’muc#register_url ’/>

<field
label=’Email␣Address ’
type=’text -single ’
var=’muc#register_email ’/>

<field
label=’FAQ␣Entry’
type=’text -multi’
var=’muc#register_faqentry ’/>

</x>
</query >

</iq>

The user SHOULD then submit the form:

Listing 64: User Submits Registration Form
<iq from=’hag66@shakespeare.lit/pda’

id=’reg2’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’jabber:iq:register ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’>
<value >http: // jabber.org/protocol/muc#register </value>

</field >
<field var=’muc#register_first ’>

<value >Brunhilde </value>
</field >
<field var=’muc#register_last ’>

<value >Entwhistle -Throckmorton </value >
</field >
<field var=’muc#register_roomnick ’>

<value >thirdwitch </value>
</field >
<field var=’muc#register_url ’>

<value >http: // witchesonline /~hag66/</value >
</field >
<field var=’muc#register_email ’>

48

7 OCCUPANT USE CASES

<value >hag66@witchesonline </value >
</field >
<field var=’muc#register_faqentry ’>

<value >Just another witch.</value >
</field >

</x>
</query >

</iq>

If the desired room nickname is already reserved for that room, the room MUST return a
<conflict/> error to the user:

Listing 65: Room Returns Conflict Error to User
<iq from=’coven@chat.shakespeare.lit’

id=’reg2’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<error type=’cancel ’>
<conflict xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If the room or service does not support registration, it MUST return a <service-unavailable/>
error to the user:

Listing 66: Room Returns Service Unavailable Error to User
<iq from=’coven@chat.shakespeare.lit’

id=’reg2’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<error type=’cancel ’>
<service -unavailable xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If the user did not include a valid data form, the room MUST return a <bad-request/> error to
the user:

Listing 67: Room Returns Service Bad Request Error to User
<iq from=’coven@chat.shakespeare.lit’

id=’reg2’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<error type=’modify ’>
<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >

49

7 OCCUPANT USE CASES

</iq>

Otherwise, the room MUST inform the user that the registration request was successfully
received:

Listing 68: Room Informs User that Registration Request Has Been Processed
<iq from=’coven@chat.shakespeare.lit’

id=’reg2’
to=’hag66@shakespeare.lit/pda’
type=’result ’/>

After the user submits the form, the service MAY request that the submission be approved
by a room admin/owner (see the Approving Registration Requests section of this document)
or MAY immediately add the user to the member list by changing the user’s affiliation from
”none” to ”member”. If the service changes the user’s affiliation and the user is in the room, it
MUST send updated presence from this individual to all occupants, indicating the change in af-
filiation by including an <x/> element qualified by the ’http://jabber.org/protocol/muc#user’
namespace and containing an <item/> child with the ’affiliation’ attribute set to a value of
”member”.

Listing 69: Service Sends Notice of Membership to All Occupants
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit/pda’
role=’participant ’/>

</x>
</presence >

[...]

If a user has registered with a room, the room MAY choose to restrict the user to use of the
registered nickname only in that room. If it does so, it SHOULD return a <not-acceptable/>
error to the user if the user attempts to join the room with a roomnick other than the
user’s registered roomnick (this enables a room to ”lock down” roomnicks for consistent
identification of occupants).

7.12 Getting Member List

If allowed in accordance with room configuration, an occupant MAY be allowed to retrieve the
list of roommembers. For details, see theModifying theMember List section of this document.

50

7 OCCUPANT USE CASES

7.13 Discovering Reserved Room Nickname

A user MAY have a reserved room nickname, for example through explicit room registration,
database integration, or nickname ”lockdown”. A user SHOULD discover his or her reserved
nickname before attempting to enter the room. This is done by sending a Service Discovery
information request to the room JID while specifying a well-known Service Discovery node of
”x-roomuser-item”.

Listing 70: User Requests Reserved Nickname
<iq from=’hag66@shakespeare.lit/pda’

id=’getnick1 ’
to=’coven@chat.shakespeare.lit’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/disco#info’
node=’x-roomuser -item’/>

</iq>

It is OPTIONAL for a multi-user chat service to support the foregoing service discovery node.
If the room or service does not support the foregoing service discovery node, it MUST return
a <feature-not-implemented/> error to the user. If it does and the user has a registered nick-
name, it MUST return the nickname to the user as the value of the ’name’ attribute of a Service
Discovery <identity/> element (for which the category/type SHOULD be ”conference/text”):

Listing 71: Room Returns Nickname
<iq from=’coven@chat.shakespeare.lit’

id=’getnick1 ’
to=’hag66@shakespeare.lit/pda’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/disco#info’
node=’x-roomuser -item’>

<identity
category=’conference ’
name=’thirdwitch ’
type=’text’/>

</query >
</iq>

If the user does not have a registered nickname, the room MUST return a service discovery
<query/> element that is empty (in accordance with XEP-0030).
Even if a user has registered one room nickname, the service SHOULD allow the user to
specify a different nickname on entering the room (e.g., in order to join from different client
resources), although the service MAY choose to ”lock down” nicknames and therefore deny
entry to the user, including a <not-acceptable/> error. The service MUST NOT return an error
to the user if his or her client sends the foregoing request after having already joined the
room, but instead SHOULD reply as previously described.

51

8 MODERATOR USE CASES

If another user attempts to join the room with a nickname reserved by the first user, the ser-
viceMUSTdeny entry to the seconduser and return a <conflict/> error as previously described.

7.14 Requesting Voice

It is not possible for a visitor to speak (i.e., send a message to all occupants) in a moderated
room. To request voice, a visitor SHOULD send a <message/> stanza containing a data form
to the room itself, where the data form contains only a ’muc#role’ field with a value of
”participant”.

Listing 72: Occupant Requests Voice
<message from=’hag66@shakespeare.lit/pda’

to=’coven@chat.shakespeare.lit’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’>
<value >http: // jabber.org/protocol/muc#request </value>

</field >
<field var=’muc#role’

type=’text -single ’
label=’Requested␣role’>

<value >participant </value>
</field >

</x>
</message >

The service then SHOULD forward the request to the room moderator(s) as described in the
Approving Voice Requests section of this document.

8 Moderator Use Cases

A moderator has privileges to perform certain actions within the room (e.g., to change the
roles of some occupants) but does not have rights to change persistent information about
affiliations (which may be changed only by an admin or owner) or defining information
about the room. Exactly which actions may be performed by a moderator is subject to
configuration. However, for the purposes of the MUC framework, moderators are stipulated
to have privileges to perform the following actions:

1. discover an occupant’s full JID in a semi-anonymous room (occurs by default as shown
above)

2. modify the subject

3. kick a participant or visitor from the room

52

8 MODERATOR USE CASES

4. grant or revoke voice in a moderated room

5. modify the list of occupants who have voice in a moderated room

These features shall be implemented with a request/response exchange using <iq/> elements
that contain children qualified by the ’http://jabber.org/protocol/muc#admin’ namespace.
The examples below illustrate the protocol interactions to implement the desired functional-
ity. (Except where explicitly noted below, any of the following administrative requests MUST
be denied if the <user@host> of the ’from’ address of the request does not match the bare JID
portion of one of the moderators; in this case, the service MUST return a <forbidden/> error.)

8.1 Modifying the Room Subject

A common feature of multi-user chat rooms is the ability to change the subject within the
room. By default, only users with a role of ”moderator” SHOULD be allowed to change the
subject in a room (although this SHOULD be configurable, with the result that a mere partici-
pant or even visitor may be allowed to change the subject if desired). The subject is changed
by sending a message of type ”groupchat” to the <room@service>, where the <message/>
MUST contain a <subject/> element that specifies the new subject but SHOULD NOT contain
any other element (e.g., no <body/> element or <thread/> element).

Listing 73: Moderator Changes Subject
<message

from=’wiccarocks@shakespeare.lit/laptop ’
to=’coven@chat.shakespeare.lit’
type=’groupchat ’>

<subject >Fire Burn and Cauldron Bubble!</subject >
</message >

If a MUC service receives such a message, it MUST reflect the message to all other occupants
with a ’from’ address equal to the room JID that corresponds to the sender of the subject
change:

Listing 74: Service Informs All Occupants of Subject Change
<message

from=’coven@chat.shakespeare.lit/secondwitch ’
to=’crone1@shakespeare.lit/desktop ’
type=’groupchat ’>

<subject >Fire Burn and Cauldron Bubble!</subject >
</message >

[...]

53

8 MODERATOR USE CASES

In addition, the room SHOULD include the last subject change in the discussion history sent
when a new occupant joins the room.
A MUC client that receives such a message MAY choose to display an in-room message, such
as the following:

Listing 75: Client Displays Room Subject Change Message
* secondwitch has changed the subject to: Fire Burn and Cauldron

Bubble!

If someone without appropriate privileges attempts to change the room subject, the service
MUST return a message of type ”error” specifying a <forbidden/> error condition:

Listing 76: Service Returns Error Related to Unauthorized Subject Change
<message

from=’coven@chat.shakespeare.lit’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<subject >Fire Burn and Cauldron Bubble!</subject >
<error type=’auth’>

<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</message >

In order to remove the existing subject but not provide a new subject (i.e., set the subject
to be empty), the client shall send an empty <subject/> element (i.e., either ”<subject/>” or
”<subject></subject>”).

Listing 77: Moderator Sets Empty Subject
<message

from=’wiccarocks@shakespeare.lit/laptop ’
to=’coven@chat.shakespeare.lit’
type=’groupchat ’>

<subject ></subject >
</message >

8.2 Kicking an Occupant

A moderator has permissions kick certain kinds of occupants from a room (which occupants
are ”kickable” depends on service provisioning, room configuration, and the moderator’s
affiliation -- see below). The kick is normally performed based on the occupant’s room
nickname (though it MAY be based on the full JID) and is completed by setting the role of a
participant or visitor to a value of ”none”.

54

8 MODERATOR USE CASES

Listing 78: Moderator Kicks Occupant
<iq from=’fluellen@shakespeare.lit/pda’

id=’kick1 ’
to=’harfleur@henryv.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item nick=’pistol ’ role=’none’>

<reason >Avaunt , you cullion!</reason >
</item>

</query >
</iq>

The service MUST remove the kicked occupant by sending a presence stanza of type ”un-
available” to each kicked occupant, including status code 307 in the extended presence
information, optionally along with the reason (if provided) and the bare JID of the user who
initiated the kick.

Listing 79: Service Removes Kicked Occupant
<presence

from=’harfleur@henryv.shakespeare.lit/pistol ’
to=’pistol@shakespeare.lit/harfleur ’
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’none’ role=’none’>

<actor jid=’fluellen@shakespeare.lit’/>
<reason >Avaunt , you cullion!</reason >

</item>
<status code=’307’/>

</x>
</presence >

The inclusion of the status code assists clients in presenting their own notification messages
(e.g., information appropriate to the user’s locality). The optional inclusion of the reason and
actor enable the kicked user to understand why he or she was kicked, and by whom if the
kicked occupant would like to discuss the matter. 19
After removing the kicked occupant(s), the service MUST then inform the moderator of
success:

Listing 80: Service Informs Moderator of Success
<iq from=’harfleur@henryv.shakespeare.lit’

id=’kick1 ’
to=’fluellen@shakespeare.lit/pda’
type=’result ’/>

19Some commentors have complained that this opens room owners and administrators up to potential abuse;
unfortunately, with great power comes great responsibility.

55

8 MODERATOR USE CASES

After informing the moderator, the service MUST then inform all of the remaining occupants
that the kicked occupant is no longer in the room by sending presence stanzas of type
”unavailable” from the individual’s roomnick (<room@service/nick>) to all the remaining
occupants (just as it does when occupants exit the room of their own volition), including the
status code and optionally the reason and actor.

Listing 81: Service Informs Remaining Occupants
<presence

from=’harfleur@henryv.shakespeare.lit/pistol ’
to=’gower@shakespeare.lit/cell’
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’none’ role=’none’/>
<status code=’307’/>

</x>
</presence >

[...]

A user cannot be kicked by a moderator with a lower affiliation. Therefore, if a moderator
who is a participant attempts to kick an admin or a moderator who is a participant or admin
attempts to kick an owner, the service MUST deny the request and return a <not-allowed/>
error to the sender:

Listing 82: Service Returns Error on Attempt to Kick User With Higher Affiliation
<iq from=’coven@chat.shakespeare.lit’

id=’kicktest ’
to=’wiccarocks@shakespeare.lit/laptop ’
type=’error ’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item nick=’firstwitch ’ role=’none’>

<reason >Be gone!</reason >
</item>

</query >
<error type=’cancel ’>

<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

If a moderator attempts to kick himself, the service MAY deny the request and return a
<conflict/> error to the sender. (Although the act of kicking oneself may seem odd, it is
common in IRC as a way of apologizing for one’s actions in the room.)

56

8 MODERATOR USE CASES

8.3 Granting Voice to a Visitor

In a moderated room, a moderator may want to manage who does and does not have ”voice”
in the room (i.e., the ability to send messages to all occupants). Voice is granted based
on the visitor’s room nickname, which the service will convert into the visitor’s full JID in-
ternally. Themoderator grants voice to a visitor by changing the visitor’s role to ”participant”.

Listing 83: Moderator Grants Voice to a Visitor
<iq from=’crone1@shakespeare.lit/desktop ’

id=’voice1 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item nick=’thirdwitch ’

role=’participant ’/>
</query >

</iq>

The <reason/> element is OPTIONAL:

Listing 84: Moderator Grants Voice to a Visitor (With a Reason)
<iq from=’crone1@shakespeare.lit/desktop ’

id=’voice1 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item nick=’thirdwitch ’

role=’participant ’>
<reason >A worthy witch indeed!</reason >

</item>
</query >

</iq>

The service MUST then inform the moderator of success:

Listing 85: Service Informs Moderator of Success
<iq from=’coven@chat.shakespeare.lit’

id=’voice1 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

The service MUST then send updated presence from this individual’s <room@service/nick>
to all occupants, indicating the addition of voice privileges by including an <x/> element
qualified by the ’http://jabber.org/protocol/muc#user’ namespace and containing an <item/>
child with the ’role’ attribute set to a value of ”participant”.

57

8 MODERATOR USE CASES

Listing 86: Service Sends Notice of Voice to All Occupants
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

nick=’thirdwitch ’
role=’participant ’>

<reason >A worthy witch indeed!</reason >
</item>

</x>
</presence >

[...]

8.4 Revoking Voice from a Participant

In a moderated room, a moderator may want to revoke a participant’s privileges to speak. The
moderator can revoke voice from a participant by changing the participant’s role to ”visitor”:

Listing 87: Moderator Revokes Voice from a Participant
<iq from=’crone1@shakespeare.lit/desktop ’

id=’voice2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item nick=’thirdwitch ’

role=’visitor ’/>
</query >

</iq>

The <reason/> element is OPTIONAL:

Listing 88: Moderator Revokes Voice from a Visitor (With a Reason)
<iq from=’crone1@shakespeare.lit/desktop ’

id=’voice2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item nick=’thirdwitch ’

role=’visitor ’>
<reason >Not so worthy after all!</reason >

</item>
</query >

</iq>

58

8 MODERATOR USE CASES

The service MUST then inform the moderator of success:

Listing 89: Service Informs Moderator of Success
<iq from=’coven@chat.shakespeare.lit’

id=’voice2 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

The serviceMUST then send updated presence from this individual to all occupants, indicating
the removal of voice privileges by sending a presence element that contains an <x/> element
qualified by the ’http://jabber.org/protocol/muc#user’ namespace and containing an <item/>
child with the ’role’ attribute set to a value of ”visitor”.

Listing 90: Service Notes Loss of Voice
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit/pda’
role=’visitor ’/>

</x>
</presence >

[...]

Amoderator MUST NOT be able to revoke voice from a user whose affiliation is at or above the
moderator’s level. In addition, a service MUST NOT allow the voice privileges of an admin or
owner to be removed by anyone. If a moderator attempts to revoke voice privileges from such
a user, the service MUST deny the request and return a <not-allowed/> error to the sender
along with the offending item(s):

Listing 91: Service Returns Error on Attempt to Revoke Voice from an Admin, Owner, or User
with a Higher Affiliation

<iq from=’coven@chat.shakespeare.lit’
id=’voicetest ’
to=’crone1@shakespeare.lit/desktop ’
type=’error ’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item nick=’secondwitch ’ role=’visitor ’/>

</query >
<error type=’cancel ’>

<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

59

8 MODERATOR USE CASES

8.5 Modifying the Voice List

A moderator in a moderated room may want to modify the voice list. To do so, the moderator
first requests the voice list by querying the room for all occupants with a role of ’participant’.

Listing 92: Moderator Requests Voice List
<iq from=’bard@shakespeare.lit/globe’

id=’voice3 ’
to=’goodfolk@chat.shakespeare.lit’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item role=’participant ’/>

</query >
</iq>

The service MUST then return the voice list to the moderator; each item MUST include the
’nick’ and ’role’ attributes and SHOULD include the ’affiliation’ and ’jid’ attributes:

Listing 93: Service Sends Voice List to Moderator
<iq from=’goodfolk@chat.shakespeare.lit’

id=’voice3 ’
to=’bard@shakespeare.lit/globe’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’none’

jid=’polonius@hamlet/castle ’
nick=’Polo’
role=’participant ’/>

<item affiliation=’none’
jid=’horatio@hamlet/castle ’
nick=’horotoro ’
role=’participant ’/>

<item affiliation=’member ’
jid=’hecate@shakespeare.lit/broom ’
nick=’Hecate ’
role=’participant ’/>

</query >
</iq>

The moderator MAY then modify the voice list. In order to do so, the moderator MUST send
the changed items (i.e., only the ”delta”) back to the service; each itemMUST include the ’nick’
attribute and ’role’ attribute (normally set to a value of ”participant” or ”visitor”) but SHOULD
NOT include the ’jid’ attribute and MUST NOT include the ’affiliation’ attribute (which is used
to manage affiliations such as owner rather than the participant role):

60

8 MODERATOR USE CASES

Listing 94: Moderator Sends Modified Voice List to Service
<iq from=’bard@shakespeare.lit/globe’

id=’voice4 ’
to=’goodfolk@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item nick=’Hecate ’

role=’visitor ’/>
<item nick=’rosencrantz ’

role=’participant ’>
<reason >A worthy fellow.</reason >

</item>
<item nick=’guildenstern ’

role=’participant ’>
<reason >A worthy fellow.</reason >

</item>
</query >

</iq>

The service MUST then inform the moderator of success:

Listing 95: Service Informs Moderator of Success
<iq from=’goodfolk@chat.shakespeare.lit’

id=’voice1 ’
to=’bard@shakespeare.lit/globe’
type=’result ’/>

The service MUST then send updated presence for any affected individuals to all occupants,
indicating the change in voice privileges by sending the appropriate extended presence
stanzas as described in the foregoing use cases.
As noted, voice privileges cannot be revoked from a room owner or room admin, nor from
any user with a higher affiliation than the moderator making the request. If a room admin
attempts to revoke voice privileges from such a user by modifying the voice list, the service
MUST deny the request and return a <not-allowed/> error to the sender:

Listing 96: Service Returns Error on Attempt to Revoke Voice from an Admin, Owner, or User
with a Higher Affiliation

<iq from=’goodfolk@chat.shakespeare.lit’
id=’voicetest ’
to=’bard@shakespeare.lit/globe’
type=’error ’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item jid=’hecate@shakespeare.lit’

nick=’Hecate ’
role=’visitor ’/>

</query >

61

8 MODERATOR USE CASES

<error type=’cancel ’>
<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

8.6 Approving Voice Requests

As noted in the Requesting Voice section of this document, when a service receives a request
for voice from an occupant it SHOULD forward that request to the room moderator(s). To do
so, the service SHOULD send a <message/> stanza to the room moderator(s), where the <mes-
sage/> stanza contains a data form asking for approval or denial of the request, as shownbelow.

Listing 97: Voice Request Approval Form
<message from=’coven@chat.shakespeare.lit’

id=’approve ’
to=’crone1@shakespeare.lit/pda’>

<x xmlns=’jabber:x:data ’ type=’form’>
<title >Voice request </title>
<instructions >

To approve this request for voice , select
the "Grant voice to this person ?"
checkbox and click OK. To skip this request ,
click the cancel button.

</instructions >
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http: // jabber.org/protocol/muc#request </value>
</field >
<field var=’muc#role’

type=’text -single ’
label=’Requested␣role’>

<value >participant </value>
</field >
<field var=’muc#jid’

type=’text -single ’
label=’User␣ID’>

<value >hag66@shakespeare.lit/pda</value >
</field >
<field var=’muc#roomnick ’

type=’text -single ’
label=’Room␣Nickname ’>

<value >thirdwitch </value>
</field >
<field var=’muc#request_allow ’

type=’boolean ’
label=’Grant␣voice␣to␣this␣person?’>

<value >false </value>
</field >

62

9 ADMIN USE CASES

</x>
</message >

In order to approve the request, a moderator shall submit the form:

Listing 98: Voice Request Approval Submission
<message from=’crone1@shakespeare.lit/pda’

id=’approve ’
to=’coven@chat.shakespeare.lit’>

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http: // jabber.org/protocol/muc#request </value>
</field >
<field var=’muc#role’>

<value >participant </value>
</field >
<field var=’muc#jid’>

<value >hag66@shakespeare.lit/pda</value >
</field >
<field var=’muc#roomnick ’>

<value >thirdwitch </value>
</field >
<field var=’muc#request_allow ’>

<value >true</value>
</field >

</x>
</message >

If a moderator approves the voice request, the service shall grant voice to the occupant and
send a presence update as described in the GrantingVoice to aVisitor section of this document.

9 Admin Use Cases

A room administrator has privileges to modify persistent information about user affiliations
(e.g., by banning users) and to grant and revoke moderator privileges, but does not have
rights to change the defining features of the room, which are the sole province of the room
owner(s). Exactly which actions may be performed by a room admin will be subject to
configuration. However, for the purposes of the MUC framework, room admins are stipulated
to at a minimum have privileges to perform the following actions:

1. ban a user from the room

2. modify the list of users who are banned from the room

3. grant or revoke membership

63

9 ADMIN USE CASES

4. modify the member list

5. grant or revoke moderator privileges

6. modify the list of moderators

These features shall be implemented with a request/response exchange using <iq/> elements
that contain children qualified by the ’http://jabber.org/protocol/muc#admin’ namespace.
The examples below illustrate the protocol interactions that implement the desired func-
tionality. (Except where explicitly noted below, any of the following administrative requests
MUST be denied if the <user@host> of the ’from’ address of the request does not match the
bare JID of one of the room admins; in this case, the serviceMUST return a <forbidden/> error.)

9.1 Banning a User

An admin or owner can ban one or more users from a room. The ban MUST be performed
based on the occupant’s bare or full JID. In order to ban a user, an admin MUST change the
user’s affiliation to ”outcast”.

Listing 99: Admin Bans User
<iq from=’kinghenryv@shakespeare.lit/throne ’

id=’ban1’
to=’southampton@henryv.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’outcast ’

jid=’earlofcambridge@shakespeare.lit’/>
</query >

</iq>

The <reason/> element is OPTIONAL.

Listing 100: Admin Bans User (With a Reason)
<iq from=’kinghenryv@shakespeare.lit/throne ’

id=’ban1’
to=’southampton@henryv.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’outcast ’

jid=’earlofcambridge@shakespeare.lit’>
<reason >Treason </reason >

</item>
</query >

</iq>

64

9 ADMIN USE CASES

The service MUST add that JID to the ban list, SHOULD remove the outcast’s nickname from
the list of registered nicknames, and MUST inform the admin or owner of success:

Listing 101: Service Informs Admin or Owner of Success
<iq from=’southampton@henryv.shakespeare.lit’

id=’ban1’
to=’kinghenryv@shakespeare.lit/throne ’
type=’result ’/>

The service MUST also remove any banned users who are in the room by sending a presence
stanza of type ”unavailable” to each banned occupant, including status code 301 in the
extended presence information, optionally along with the reason (if provided) and the bare
JID of the user who initiated the ban.

Listing 102: Service Removes Banned User
<presence

from=’southampton@henryv.shakespeare.lit/cambridge ’
to=’earlofcambridge@shakespeare.lit/stabber ’
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’outcast ’ role=’none’>

<actor jid=’kinghenryv@shakespeare.lit’/>
<reason >Treason </reason >

</item>
<status code=’301’/>

</x>
</presence >

The inclusion of the status code assists clients in presenting their own notification messages
(e.g., information appropriate to the user’s locality). The optional inclusion of the reason and
actor enable the banned user to understand why he or she was banned, and by whom if the
banned user would like to discuss the matter.
The service MUST then inform all of the remaining occupants that the banned user is no
longer in the room by sending presence stanzas of type ”unavailable” from the banned user to
all remaining occupants (just as it does when occupants exit the room of their own volition),
including the status code and optionally the reason and actor:

Listing 103: Service Informs Remaining Occupants
<presence

type=’unavailable ’
from=’southampton@henryv.shakespeare.lit/cambridge ’
to=’exeter@shakespeare.lit/pda’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’outcast ’

65

9 ADMIN USE CASES

jid=’earlofcambridge@shakespeare.lit/stabber ’
role=’none’/>

<status code=’301’/>
</x>

</presence >

[...]

As with Kicking an Occupant, a user cannot be banned by an admin with a lower affiliation.
Therefore, if an admin attempts to ban an owner, the service MUST deny the request and
return a <not-allowed/> error to the sender:

Listing 104: Service Returns Error on Attempt to Ban User With Higher Affiliation
<iq from=’kinghenryv@shakespeare.lit/throne ’

id=’ban1’
to=’southampton@henryv.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’outcast ’

jid=’earlofcambridge@shakespeare.lit’>
<reason >Treason </reason >

</item>
</query >
<error type=’cancel ’>

<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

If an admin or owner attempts to ban himself, the service MUST deny the request and return
a <conflict/> error to the sender. (Note: This is different from the recommended service
behavior on kicking oneself, which a service may allow.)

9.2 Banning a Service

An admin or owner can ban all users of a service. The ban MUST be performed based on the
domain of that service. In order to ban all users that have a domainpart matching the service’s
domain, an admin MUST change the service’s affiliation to ”outcast”.

Listing 105: Admin Bans Service
<iq from=’kinghenryv@shakespeare.lit/throne ’

id=’ban2’
to=’southampton@henryv.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’outcast ’

66

9 ADMIN USE CASES

jid=’mozart.lit’/>
</query >

</iq>

The <reason/> element is OPTIONAL.

Listing 106: Admin Bans Service (With a Reason)
<iq from=’kinghenryv@shakespeare.lit/throne ’

id=’ban2’
to=’southampton@henryv.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’outcast ’

jid=’mozart.lit’>
<reason >Treason </reason >

</item>
</query >

</iq>

The service MUST add that domain to the ban list, SHOULD remove all nickname’s of users
with a matching domainpart from the list of registered nicknames, and MUST inform the
admin or owner of success:

Listing 107: Service Informs Admin or Owner of Success
<iq from=’southampton@henryv.shakespeare.lit’

id=’ban2’
to=’kinghenryv@shakespeare.lit/throne ’
type=’result ’/>

The service MUST also remove any banned users who are in the room by sending a presence
stanza of type ”unavailable” to each banned occupant, including status code 301 in the
extended presence information, optionally along with the reason (if provided) and the bare
JID of the user who initiated the ban.

Listing 108: Service Removes Banned User
<presence

from=’southampton@henryv.shakespeare.lit/musician ’
to=’willy@mozart.lit/piano’
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’outcast ’ role=’none’>

<actor jid=’kinghenryv@shakespeare.lit’/>
<reason >Treason </reason >

</item>
<status code=’301’/>

67

9 ADMIN USE CASES

</x>
</presence >

The inclusion of the status code assists clients in presenting their own notification messages
(e.g., information appropriate to the user’s locality). The optional inclusion of the reason and
actor enable the banned user to understand why he or she was banned, and by whom if the
banned user would like to discuss the matter.
The service MUST then inform all of the remaining occupants that the banned user is no
longer in the room by sending presence stanzas of type ”unavailable” from the banned user to
all remaining occupants (just as it does when occupants exit the room of their own volition),
including the status code and optionally the reason and actor:

Listing 109: Service Informs Remaining Occupants
<presence

type=’unavailable ’
from=’southampton@henryv.shakespeare.lit/musician ’
to=’exeter@shakespeare.lit/pda’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’outcast ’

jid=’willy@mozart.lit/piano’
role=’none’/>

<status code=’301’/>
</x>

</presence >

[...]

9.3 Modifying the Ban List

A room admin may want to modify the ban list. To modify the list of banned JIDs, the admin
first requests the ban list by querying the room for all entities with an affiliation of ’outcast’.

Listing 110: Admin Requests Ban List
<iq from=’kinghenryv@shakespeare.lit/throne ’

id=’ban2’
to=’southampton@henryv.shakespeare.lit’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’outcast ’/>

</query >
</iq>

The serviceMUST then return the list of banned entities to the admin; each itemMUST include
the ’affiliation’ and ’jid’ attributes but SHOULD NOT include the ’nick’ and ’role’ attributes:

68

9 ADMIN USE CASES

Listing 111: Service Sends Ban List to Admin
<iq from=’southampton@henryv.shakespeare.lit’

id=’ban2’
to=’kinghenryv@shakespeare.lit/throne ’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’outcast ’

jid=’earlofcambridge@shakespeare.lit’>
<reason >Treason </reason >

</item>
</query >

</iq>

The admin MAY thenmodify the ban list. In order to do so, the admin MUST send the changed
items (i.e., only the ”delta”) back to the service; each item MUST include the ’affiliation’ at-
tribute (normally set to a value of ”outcast” to ban or ”none” to remove ban) and ’jid’ attribute
but SHOULDNOT include the ’nick’ attribute andMUST NOT include the ’role’ attribute (which
is used to manage roles such as participant rather than the outcast affiliation); in addition,
the reason and actor elements are OPTIONAL:

Listing 112: Admin Sends Modified Ban List to Service
<iq from=’kinghenryv@shakespeare.lit/throne ’

id=’ban3’
to=’southampton@henryv.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’outcast ’

jid=’earlofcambridge@shakespeare.lit’>
<reason >Treason </reason >

</item>
<item affiliation=’outcast ’>

jid=’lordscroop@shakespeare.lit’>
<reason >Treason </reason >

</item>
<item affiliation=’outcast ’

jid=’sirthomasgrey@shakespeare.lit’>
<reason >Treason </reason >

</item>
</query >

</iq>

After updating the ban list, the service MUST inform the admin of success:

Listing 113: Service Informs Admin of Success
<iq from=’southampton@henryv.shakespeare.lit’

id=’ban3’

69

9 ADMIN USE CASES

to=’kinghenryv@shakespeare.lit/throne ’
type=’result ’/>

The service MUST then remove the affected occupants (if they are in the room) and send
updated presence (including the appropriate status code) from them to all the remaining
occupants as described in the ”Banning a User” use case. (The service SHOULD also remove
each banned user’s reserved nickname from the list of reserved roomnicks, if appropriate.)

9.4 Granting Membership to a User

An admin can grant membership to a user; this is done by changing the user’s affiliation to
”member” (normally based on nick if the user is in the room, or on bare or full JID if not; in
either case, if the nick is provided, that nick becomes the user’s default nick in the room if
that functionality is supported by the implementation):

Listing 114: Admin Grants Membership
<iq from=’crone1@shakespeare.lit/desktop ’

id=’member1 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit’/>
</query >

</iq>

The <reason/> element is OPTIONAL.

Listing 115: Admin Grants Membership (With a Reason)
<iq from=’crone1@shakespeare.lit/desktop ’

id=’member1 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit’>
<reason >A worthy witch indeed!</reason >

</item>
</query >

</iq>

The service MUST add the user to the member list and then inform the admin of success:

Listing 116: Service Informs Admin of Success

70

9 ADMIN USE CASES

<iq from=’coven@chat.shakespeare.lit’
id=’member1 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

If the user is in the room, the serviceMUST then send updated presence from this individual to
all occupants, indicating the granting of membership by including an <x/> element qualified
by the ’http://jabber.org/protocol/muc#user’ namespace and containing an <item/> child
with the ’affiliation’ attribute set to a value of ”member”.

Listing 117: Service Sends Notice of Membership to All Occupants
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit/pda’
role=’participant ’/>

</x>
</presence >

[...]

If the user is not in the room, the service MAY send amessage from the room itself to the room
occupants, indicating the granting of membership by including an <x/> element qualified by
the ’http://jabber.org/protocol/muc#user’ namespace and containing an <item/> child with
the ’affiliation’ attribute set to a value of ”member”.

Listing 118: Service Sends Notice of Membership to All Occupants
<message

from=’chat.shakespeare.lit’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit’
role=’none’/>

</x>
</message >

[...]

9.5 Granting Membership to a Service

An admin can grant membership to all users of a service; this is done by adding the service’s
domain to the member list. Even if a nick is provided the MUC service MUST NOT save a nick

71

9 ADMIN USE CASES

with the domain:

Listing 119: Admin Grants Membership
<iq from=’crone1@shakespeare.lit/desktop ’

id=’member2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’member ’

jid=’hamlet.lit’/>
</query >

</iq>

The <reason/> element is OPTIONAL.

Listing 120: Admin Grants Membership (With a Reason)
<iq from=’crone1@shakespeare.lit/desktop ’

id=’member2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’member ’

jid=’hamlet.lit’>
<reason >A worthy witch indeed!</reason >

</item>
</query >

</iq>

The service MUST add the domain to the member list and then inform the admin of success:

Listing 121: Service Informs Admin of Success
<iq from=’coven@chat.shakespeare.lit’

id=’member2 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

If a user of the service is in the room, theMUC service MUST then send updated presence from
this individual to all occupants, indicating the granting of membership by including an <x/>
element qualified by the ’http://jabber.org/protocol/muc#user’ namespace and containing
an <item/> child with the ’affiliation’ attribute set to a value of ”member”.

Listing 122: Service Sends Notice of Membership to All Occupants
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’

72

9 ADMIN USE CASES

to=’crone1@shakespeare.lit/desktop ’>
<x xmlns=’http: // jabber.org/protocol/muc#user’>

<item affiliation=’member ’
jid=’claudius@hamlet.lit/book’
role=’participant ’/>

</x>
</presence >

[...]

Additionally the service MAY send a message from the room itself to the room occupants,
indicating the granting of membership by including an <x/> element qualified by the
’http://jabber.org/protocol/muc#user’ namespace and containing an <item/> child with the
’affiliation’ attribute set to a value of ”member”.

Listing 123: Service Sends Notice of Membership to All Occupants
<message

from=’chat.shakespeare.lit’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hamlet.lit’
role=’none’/>

</x>
</message >

[...]

9.6 Revoking Membership

An admin may want to revoke an entity’s membership; this is done by changing the entity’s
affiliation to ”none”:

Listing 124: Admin Revokes Membership
<iq from=’crone1@shakespeare.lit/desktop ’

id=’member2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’none’

jid=’hag66@shakespeare.lit’/>
</query >

</iq>

The <reason/> element is OPTIONAL.

73

9 ADMIN USE CASES

Listing 125: Admin Revokes Membership (With a Reason)
<iq from=’crone1@shakespeare.lit/desktop ’

id=’member2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’none’

jid=’hag66@shakespeare.lit’>
<reason >Not so worthy after all!</reason >

</item>
</query >

</iq>

The service MUST remove the entity from the member list and then inform the moderator of
success:

Listing 126: Service Informs Moderator of Success
<iq from=’coven@chat.shakespeare.lit’

id=’member2 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

The service MUST then send updated presence from all affected individuals to all occupants,
indicating the loss of membership by sending a presence element that contains an <x/>
element qualified by the ’http://jabber.org/protocol/muc#user’ namespace and containing
an <item/> child with the ’affiliation’ attribute set to a value of ”none”.

Listing 127: Service Notes Loss of Membership
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’none’

jid=’hag66@shakespeare.lit/pda’
role=’participant ’/>

</x>
</presence >

[...]

If the room is members-only, the service MUST remove the affected entities from the room,
including a status code of 321 to indicate that the entity was removed because of an affiliation
change, and inform all remaining occupants:

Listing 128: Service Removes Non-Member

74

9 ADMIN USE CASES

<presence
from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’>
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’none’ role=’none’>

<actor jid=’bard@shakespeare.lit’/>
</item>
<status code=’321’/>

</x>
</presence >

<presence
from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’>
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’none’ role=’none’/>
<status code=’321’/>

</x>
</presence >

[...]

9.7 Modifying the Member List

In the context of a members-only room, the member list is essentially a ”whitelist” of people
who are allowed to enter the room. Anyone who is not a member is effectively banned from
entering the room, even if their affiliation is not ”outcast”.
In the context of an open room, the member list is simply a list of entities (bare or full JID and
reserved nick, or domain) who are registered with the room. Such entities may appear in a
room roster, have their room nickname reserved, be returned in search results or FAQ queries,
and the like.
It is RECOMMENDED that only room admins have the privilege to modify the member list in
members-only rooms. To do so, the admin first requests the member list by querying the
room for all users with an affiliation of ”member”:

Listing 129: Admin Requests Member List
<iq from=’crone1@shakespeare.lit/desktop ’

id=’member3 ’
to=’coven@chat.shakespeare.lit’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’member ’/>

</query >

75

9 ADMIN USE CASES

</iq>

Note: A service SHOULD also return themember list to any occupant in amembers-only room;
i.e., it SHOULD NOT generate a <forbidden/> error when a member in the room requests the
member list. This functionality may assist clients in showing all the existing members even if
some of them are not in the room, e.g. to help a member determine if another user should be
invited. A service SHOULD also allow any member to retrieve the member list even if not yet
an occupant.
The service MUST then return the full member list to the admin qualified by the
’http://jabber.org/protocol/muc#admin’ namespace; each item MUST include the ’affili-
ation’ and ’jid’ attributes and MAY include the ’nick’ and ’role’ attributes for each members
that is currently an occupant.

Listing 130: Service Sends Member List to Admin
<iq from=’coven@chat.shakespeare.lit’

id=’member3 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit’
nick=’thirdwitch ’
role=’participant ’/>

</query >
</iq>

The admin MAY then modify the member list. In order to do so, the admin MUST send the
changed items (i.e., only the ”delta”) to the service; each item MUST include the ’affiliation’
attribute (normally set to a value of ”member” or ”none”) and ’jid’ attribute but SHOULD
NOT include the ’nick’ attribute and MUST NOT include the ’role’ attribute (which is used to
manage roles such as participant rather than the member affiliation):

Listing 131: Admin Sends Modified Member List to Service
<iq from=’crone1@shakespeare.lit/desktop ’

id=’member4 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’none’

jid=’hag66@shakespeare.lit’/>
<item affiliation=’member ’

jid=’hecate@shakespeare.lit’/>
</query >

</iq>

76

9 ADMIN USE CASES

The service MUST modify the member list and then inform the moderator of success:

Listing 132: Service Informs Moderator of Success
<iq from=’coven@chat.shakespeare.lit’

id=’member4 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

The service MUST change the affiliation of any affected user. If the user has been removed
from the member list, the service MUST change the user’s affiliation from ”member” to
”none”. If the user has been added to the member list, the service MUST change the user’s
affiliation to ”member”.
If a removed member is currently in a members-only room, the service SHOULD kick the
occupant by changing the removed member’s role to ”none” and send appropriate presence
to the removed member as previously described. No matter whether the removed member
was in or out of a members-only room, the service MUST subsequently refuse entry to the
user.
For all room types, the service MUST send updated presence from this individual to all
occupants, indicating the change in affiliation by including an <x/> element qualified by the
’http://jabber.org/protocol/muc#user’ namespace and containing an <item/> child with the
’affiliation’ attribute set to a value of ”none”.

Listing 133: Service Sends Notice of Loss of Membership to All Occupants
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’none’

jid=’hag66@shakespeare.lit/pda’
role=’participant ’/>

</x>
</presence >

[...]

In addition, the service SHOULD send an invitation to any user who has been added to the
member list of a members-only room if the user is not currently affiliated with the room, for
example as an admin or owner (such a user would by definition not be in the room; note also
that this example includes a password but not a reason -- both child elements are OPTIONAL):

Listing 134: Room Sends Invitation to New Member
<message

from=’coven@chat.shakespeare.lit’
to=’hecate@shakespeare.lit’>

77

9 ADMIN USE CASES

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<invite from=’bard@shakespeare.lit’/>
<password >cauldronburn </password >

</x>
</message >

While only admins and owners SHOULD be allowed to modify the member list, an implemen-
tation MAY provide a configuration option that opens invitation privileges to any member of
a members-only room. In such a situation, any invitation sent SHOULD automatically trigger
the addition of the invitee to the member list. However, if invitation privileges are restricted
to admins and a mere member attempts to a send an invitation, the service MUST deny the
invitation request and return a <forbidden/> error to the sender:

Listing 135: Service Returns Error on Attempt byMereMember to Invite Others to aMembers-
Only Room

<message
from=’coven@chat.shakespeare.lit’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<invite to=’hecate@shakespeare.lit’>

<reason >
Hey Hecate , this is the place for all good witches!

</reason >
</invite >

</x>
<error type=’auth’>

<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</message >

Invitations sent through an open room MUST NOT trigger the addition of the invitee to the
member list.
If a user is added to the member list of an open room and the user is in the room, the service
MUST send updated presence from this individual to all occupants, indicating the change in af-
filiation by including an <x/> element qualified by the ’http://jabber.org/protocol/muc#user’
namespace and containing an <item/> child with the ’affiliation’ attribute set to a value of
”member”.

Listing 136: Service Sends Notice of Membership to All Occupants
<presence

from=’coven@chat.shakespeare.lit/hecate ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hecate@shakespeare.lit/broom ’

78

9 ADMIN USE CASES

role=’participant ’/>
</x>

</presence >

[...]

9.8 Granting Moderator Privileges

An admin may want to grant moderator privileges to a participant or visitor; this is done by
changing the user’s role to ”moderator”:

Listing 137: Admin Grants Moderator Privileges
<iq from=’crone1@shakespeare.lit/desktop ’

id=’mod1’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item nick=’thirdwitch ’

role=’moderator ’/>
</query >

</iq>

The <reason/> element is OPTIONAL.

Listing 138: Admin Grants Moderator Privileges (With a Reason)
<iq from=’crone1@shakespeare.lit/desktop ’

id=’mod1’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item nick=’thirdwitch ’

role=’moderator ’>
<reason >A worthy witch indeed!</reason >

</item>
</query >

</iq>

The service MUST add the user to the moderator list and then inform the admin of success:

Listing 139: Service Informs Admin of Success
<iq from=’coven@chat.shakespeare.lit’

id=’mod1’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

79

9 ADMIN USE CASES

The service MUST then send updated presence from this individual to all occupants, indi-
cating the addition of moderator privileges by including an <x/> element qualified by the
’http://jabber.org/protocol/muc#user’ namespace and containing an <item/> child with the
’role’ attribute set to a value of ”moderator”.

Listing 140: Service Sends Notice of Moderator Privileges to All Occupants
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit/pda’
role=’moderator ’/>

</x>
</presence >

[...]

9.9 Revoking Moderator Privileges

An adminmay want to revoke a user’s moderator privileges. An adminMAY revokemoderator
privileges only from a user whose affiliation is ”member” or ”none” (i.e., not from an owner
or admin). The privilege is revoked by changing the user’s role to ”participant”:

Listing 141: Admin Revokes Moderator Privileges
<iq from=’crone1@shakespeare.lit/desktop ’

id=’mod2’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item nick=’thirdwitch ’

role=’participant ’/>
</query >

</iq>

The <reason/> element is OPTIONAL.

Listing 142: Admin Revokes Moderator Privileges (With a Reason)
<iq from=’crone1@shakespeare.lit/desktop ’

id=’mod2’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item nick=’thirdwitch ’

80

9 ADMIN USE CASES

role=’participant ’>
<reason >Not so worthy after all!</reason >

</item>
</query >

</iq>

The service MUST remove the user from the moderator list and then inform the admin of
success:

Listing 143: Service Informs Admin of Success
<iq from=’coven@chat.shakespeare.lit’

id=’mod2’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

The serviceMUST then send updated presence from this individual to all occupants, indicating
the removal of moderator privileges by sending a presence element that contains an <x/>
element qualified by the ’http://jabber.org/protocol/muc#user’ namespace and containing
an <item/> child with the ’role’ attribute set to a value of ”participant”.

Listing 144: Service Notes Loss of Moderator Privileges
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit/pda’
role=’participant ’/>

</x>
</presence >

[...]

As noted, an admin MUST NOT be allowed to revoke moderator privileges from a user whose
affiliation is ”owner” or ”admin”. If an admin attempts to revoke moderator privileges from
such a user, the service MUST deny the request and return a <not-allowed/> error to the
sender:

Listing 145: Service Returns Error on Attempt to Revoke Moderator Privileges from an Admin
or Owner

<iq from=’coven@chat.shakespeare.lit’
id=’modtest ’
to=’crone1@shakespeare.lit/desktop ’
type=’error ’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>

81

9 ADMIN USE CASES

<item nick=’secondwitch ’ role=’participant ’/>
</query >
<error type=’cancel ’>

<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

9.10 Modifying the Moderator List

An admin may want to modify the moderator list. To do so, the admin first requests the
moderator list by querying the room for all users with a role of ’moderator’.

Listing 146: Admin Requests Moderator List
<iq from=’crone1@shakespeare.lit/desktop ’

id=’mod3’
to=’coven@chat.shakespeare.lit’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item role=’moderator ’/>

</query >
</iq>

The service MUST then return the moderator list to the admin; each item MUST include the
’jid’, ’nick’, and ’role’ attributes and SHOULD include the ’affiliation’ attribute:

Listing 147: Service Sends Moderator List to Admin
<iq from=’coven@chat.shakespeare.lit’

id=’mod3’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’member ’

jid=’hag66@shakespeare.lit/pda’
nick=’thirdwitch ’
role=’moderator ’/>

</query >
</iq>

The admin MAY then modify the moderator list. In order to do so, the admin MUST send
the changed items (i.e., only the ”delta”) back to the service; each item MUST include the
’jid’ attribute and ’role’ attribute (normally set to a value of ”member” or ”participant”) but
SHOULD NOT include the ’nick’ attribute and MUST NOT include the ’affiliation’ attribute
(which is used to manage affiliations such as admin rather than the moderator role):

82

9 ADMIN USE CASES

Listing 148: Admin Sends Modified Moderator List to Service
<iq from=’crone1@shakespeare.lit/desktop ’

id=’mod4’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item jid=’hag66@shakespeare.lit/pda’

role=’participant ’/>
<item jid=’hecate@shakespeare.lit/broom ’

role=’moderator ’/>
</query >

</iq>

The service MUST modify the moderator list and then inform the admin of success:

Listing 149: Service Informs Admin of Success
<iq from=’coven@chat.shakespeare.lit’

id=’mod4’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

The service MUST then send updated presence for any affected individuals to all occupants,
indicating the change in moderator privileges by sending the appropriate extended presence
stanzas as described in the foregoing use cases.
As noted, moderator privileges cannot be revoked from a room owner or room admin. If a
room admin attempts to revoke moderator privileges from such a user by modifying the mod-
erator list, the serviceMUST deny the request and return a <not-allowed/> error to the sender:

Listing 150: Service Returns Error on Attempt to Revoke Moderator Privileges from an Admin
or Owner

<iq from=’coven@chat.shakespeare.lit’
id=’modtest ’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item jid=’hecate@shakespeare.lit/broom ’

nick=’Hecate ’
role=’participant ’/>

</query >
<error type=’cancel ’>

<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

83

9 ADMIN USE CASES

9.11 Approving Registration Requests

If a service does not automatically accept requests to register with a room, it MAY provide
a way for room admins to approve or deny registration requests over XMPP (alternatively,
it could provide a web interface or some other admin tool). The simplest way to do so is for
the service to send a <message/> stanza to the room admin(s) when the registration request
is received, where the <message/> stanza contains a Data Form asking for approval or denial
of the request. The following Data Form is RECOMMENDED but implementations MAY use a
different form entirely, or supplement the following form with additional fields.

Listing 151: Registration Request Approval Form
<message from=’coven@chat.shakespeare.lit’

id=’approve ’
to=’crone1@shakespeare.lit/pda’>

<x xmlns=’jabber:x:data ’ type=’form’>
<title >Registration request </title >
<instructions >

To approve this registration request , select the
"Allow this person to register with the room?"
checkbox and click OK. To skip this request , click the
cancel button.

</instructions >
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http: // jabber.org/protocol/muc#register </value>
</field >
<field var=’muc#register_first ’

type=’text -single ’
label=’Given␣Name’>

<value >Brunhilde </value>
</field >
<field var=’muc#register_last ’

type=”text -single”
label=”Family␣Name”>

<value >Entwhistle -Throckmorton </value >
</field >
<field var=’muc#register_roomnick ’

type=”text -single”
label=”Desired␣Nickname”>

<value >thirdwitch </value>
</field >
<field var=’muc#register_url ’

type=”text -single”
label=”User␣URL”>

<value >http: // witchesonline /~ hag66/</value >
</field >
<field var=’muc#register_email ’

type=”text -single”
label=”Email␣Address”>

84

10 OWNER USE CASES

<value >hag66@witchesonline </value >
</field >
<field var=’muc#register_faqentry ’

type=”text -single”
label=”FAQ␣Entry”>

<value >Just another witch.</value >
</field >
<field var=’muc#register_allow ’

type=’boolean ’
label=’Allow␣this␣person␣to␣register␣with␣the␣room?’>

<value >0</value>
</field >

</x>
</message >

If the admin approves the registration request, the service shall register the user with the
room.
More advanced registration approval mechanisms (e.g., retrieving a list of registration re-
quests using Ad-Hoc Commands 20 as is done in Publish-Subscribe 21) are out of scope for this
document.

10 Owner Use Cases

Every room MUST have at least one owner, and that owner (or a successor) is a long-lived
attribute of the room for as long as the room exists (e.g., the owner does not lose ownership
on exiting a persistent room). This document assumes that the (initial) room owner is the
individual who creates the room and that only a room owner has the right to change defining
room configuration settings such as the room type. Ideally, room owners will be able to
specify not only the room types (password-protected, members-only, etc.) but also certain
attributes of the room as listed in the Requirements section of this document. In addition,
it would be good if an owner were able to specify the JIDs of other owners, but that shall be
determined by the implementation.
In order to provide the necessary flexibility for a wide range of configuration options,
Data Forms (XEP-0004) shall be used for room configuration, triggered by use of the
’http://jabber.org/protocol/muc’ namespace. That is, if an entity does not include the MUC
namespace in its room join/create request, then the service shall create the room and not
wait for configuration via Data Forms before creating the room (this ensures backwards-
compatibility with the old ”groupchat 1.0” protocol); however, if the room join/create request
includes the MUC extension, then the service shall require configuration via Data Forms
before creating and unlocking the room.
Note: The configuration options shown below address all of the features and room types listed
in the requirements section of this document; however, the exact configuration options and
20XEP-0050: Ad-Hoc Commands <http://xmpp.org/extensions/xep-0050.html>.
21XEP-0060: Publish-Subscribe <http://xmpp.org/extensions/xep-0060.html>.

85

http://xmpp.org/extensions/xep-0050.html
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0050.html
http://xmpp.org/extensions/xep-0060.html

10 OWNER USE CASES

form layout shall be determined by the implementation or specific deployment. Also, these
are examples only and are not intended to define the only allowed or required configuration
options for rooms. A given implementation or deployment MAY choose to provide additional
configuration options (profanity filters, setting the default language for a room, message
logging, etc.), which is why the use of the ’jabber:x:data’ protocol is valuable here.

10.1 Creating a Room

10.1.1 General Considerations

The privilege to create rooms MAY be restricted to certain users or MAY be reserved to an
administrator of the service. If access is restricted and a user attempts to create a room, the
service MUST return a <not-allowed/> error:

Listing 152: Service Informs User of Inability to Create a Room
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
<error type=’cancel ’>

<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</presence >

If access is not restricted, the service MUST allow the user to create a room as described below.
From the perspective of room creation, there are in essence two kinds of rooms:

• ”Instant rooms” -- these are available for immediate access and are automatically
created based on some default configuration.

• ”Reserved rooms” -- these are manually configured by the room creator before anyone
is allowed to enter.

The workflow for creating and configuring such rooms is as follows:

1. The user MUST send presence to <room@service/nick> and signal his or her support for
the Multi-User Chat protocol by including extended presence information in an empty
<x/> child element qualified by the ’http://jabber.org/protocol/muc’ namespace (note
the lack of an ’#owner’ or ’#user’ fragment).

86

10 OWNER USE CASES

2. If this user is allowed to create a room and the room does not yet exist, the service
MUST create the room according to some default configuration, assign the requesting
user as the initial room owner, and add the owner to the room but not allow anyone else
to enter the room (effectively ”locking” the room). The initial presence stanza received
by the owner from the room MUST include extended presence information indicating
the user’s status as an owner and acknowledging that the room has been created (via
status code 201) and is awaiting configuration.

3. If the initial room owner would like to create and configure a reserved room, the
room owner MUST then request a configuration form by sending an IQ stanza of
type ”get” to the room containing an empty <query/> element qualified by the
’http://jabber.org/protocol/muc#owner’ namespace, then complete Steps 4 and 5. If
the room owner would prefer to create an instant room, the room owner MUST send
a query element qualified by the ’http://jabber.org/protocol/muc#owner’ namespace
and containing an empty <x/> element of type ”submit” qualified by the ’jabber:x:data’
namespace, then skip to Step 6.

4. If the room owner requested a configuration form, the service MUST send an IQ to the
room owner containing a configuration form qualified by the ’jabber:x:data’ namespace.
If there are no configuration options available, the room MUST return an empty query
element to the room owner.

5. The initial room owner SHOULD provide a starting configuration for the room (or accept
the default configuration) by sending an IQ of type ”set” containing the completed
configuration form. Alternatively, the room owner MAY cancel the configuration
process. (An implementation MAY set a timeout for initial configuration, such that
if the room owner does not configure the room within the timeout period, the room
owner is assumed to have accepted the default configuration or to have cancelled the
configuration process.)

6. Once the service receives the completed configuration form from the initial room owner
(or receives a request for an instant room), the service MUST ”unlock” the room (i.e.,
allow other users to enter the room) and send an IQ of type ”result” to the room owner.
If the service receives a cancellation, it MUST destroy the room.

The protocol for this workflow is shown in the examples below.
First, the user MUST send presence to the room, including an empty <x/> element qualified by
the ’http://jabber.org/protocol/muc’ namespace (this is the same stanza sent when seeking
to enter a room).

87

10 OWNER USE CASES

Listing 153: User Creates a Room and Signals Support for Multi-User Chat
<presence

from=’crone1@shakespeare.lit/desktop ’
to=’coven@chat.shakespeare.lit/firstwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
</presence >

If the room does not yet exist, the service SHOULD create the room (subject to local policies
regarding room creation), assign the bare JID of the requesting user as the owner, add the
owner to the room, and acknowledge successful creation of the room by sending a presence
stanza of the following form:

Listing 154: Service Acknowledges Room Creation
<presence

from=’coven@chat.shakespeare.lit/firstwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’owner’

role=’moderator ’/>
<status code=’110’/>
<status code=’201’/>

</x>
</presence >

After receiving notification that the room has been created, the room owner needs to decide
whether to accept the default room configuration (i.e., create an ”instant room”) or configure
the room to have something other than the default room configuration (i.e., create a ”reserved
room”). The protocol flows for completing those two use cases are shown in the following
sections.
Note: If the presence stanza sent to a nonexistent room does not include an <x/> element
qualified by the ’http://jabber.org/protocol/muc’ namespace as shown above, the service
SHOULD create a default room without delay (i.e., it MUST assume that the client supports
”groupchat 1.0” rather than Multi-User Chat and therefore it MUST NOT lock the room while
waiting for the room creator to either accept an instant room or configure a reserved room).

10.1.2 Creating an Instant Room

If the initial room owner wants to accept the default room configuration (i.e., create an
”instant room”), the room owner MUST decline an initial configuration form by sending
an IQ set to the <room@service> itself containing a <query/> element qualified by the
’http://jabber.org/protocol/muc#owner’ namespace, where the only child of the <query/> is
an empty <x/> element that is qualified by the ’jabber:x:data’ namespace and that possesses a
’type’ attribute whose value is ”submit”:

88

10 OWNER USE CASES

Listing 155: Owner Requests Instant Room
<iq from=’crone1@shakespeare.lit/desktop ’

id=’create1 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#owner ’>
<x xmlns=’jabber:x:data ’ type=’submit ’/>

</query >
</iq>

The service MUST then unlock the room and allow other entities to join it.

10.1.3 Creating a Reserved Room

If the initial roomownerwants to create and configure a reserved room, the roomownerMUST
request an initial configuration form by sending an IQ get to the <room@service> itself con-
taining an empty <query/> element qualified by the ’http://jabber.org/protocol/muc#owner’
namespace:

Listing 156: Owner Requests Configuration Form
<iq from=’crone1@shakespeare.lit/desktop ’

id=’create1 ’
to=’coven@chat.shakespeare.lit’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/muc#owner ’/>
</iq>

If the room does not already exist, the service MUST return an initial room configuration form
to the user. (Note: The following example shows a representative sample of configuration
options. A full list of x:data fields registered for use in room creation and configuration is
maintained by the XMPP Registrar; see the XMPP Registrar Considerations section of this
document.)

Listing 157: Service Sends Configuration Form
<iq from=’coven@chat.shakespeare.lit’

id=’create1 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/muc#owner ’>
<x xmlns=’jabber:x:data ’ type=’form’>

<title >Configuration for ”coven” Room</title >
<instructions >

Your room coven@macbeth has been created!
The default configuration is as follows:

89

10 OWNER USE CASES

- No logging
- No moderation
- Up to 20 occupants
- No password required
- No invitation required
- Room is not persistent
- Only admins may change the subject
- Presence broadcasted for all users

To accept the default configuration , click OK. To
select a different configuration , please complete
this form.

</instructions >
<field

type=’hidden ’
var=’FORM_TYPE ’>

<value >http: // jabber.org/protocol/muc#roomconfig </value>
</field >
<field

label=’Natural -Language␣Room␣Name’
type=’text -single ’
var=’muc#roomconfig_roomname ’/>

<field
label=’Short␣Description␣of␣Room’
type=’text -single ’
var=’muc#roomconfig_roomdesc ’/>

<field
label=’Natural␣Language␣for␣Room␣Discussions ’
type=’text -single ’
var=’muc#roomconfig_lang ’/>

<field
label=’Enable␣Public␣Logging?’
type=’boolean ’
var=’muc#roomconfig_enablelogging ’>

<value >0</value>
</field >
<field

label=’Allow␣Occupants␣to␣Change␣Subject?’
type=’boolean ’
var=’muc#roomconfig_changesubject ’>

<value >0</value>
</field >
<field

label=’Allow␣Occupants␣to␣Invite␣Others?’
type=’boolean ’
var=’muc#roomconfig_allowinvites ’>

<value >0</value>
</field >
<field

label=’Maximum␣Number␣of␣Occupants ’

90

10 OWNER USE CASES

type=’list -single ’
var=’muc#roomconfig_maxusers ’>

<value >20</value>
<option label=’10’><value>10</value ></option >
<option label=’20’><value>20</value ></option >
<option label=’30’><value>30</value ></option >
<option label=’50’><value>50</value ></option >
<option label=’100’><value>100</value ></option >
<option label=’None’><value>none</value ></option >

</field >
<field

label=’Roles␣for␣which␣Presence␣is␣Broadcast ’
type=’list -multi’
var=’muc#roomconfig_presencebroadcast ’>

<value >moderator </value>
<value >participant </value>
<value >visitor </value>
<option label=’Moderator ’><value >moderator </value></option >
<option label=’Participant ’><value >participant </value></option

>
<option label=’Visitor ’><value >visitor </value></option >

</field >
<field

label=’Roles␣and␣Affiliations␣that␣May␣Retrieve␣Member␣List’
type=’list -multi’
var=’muc#roomconfig_getmemberlist ’>

<value >moderator </value>
<value >participant </value>
<value >visitor </value>
<option label=’Moderator ’><value >moderator </value></option >
<option label=’Participant ’><value >participant </value></option

>
<option label=’Visitor ’><value >visitor </value></option >

</field >
<field

label=’Make␣Room␣Publicly␣Searchable?’
type=’boolean ’
var=’muc#roomconfig_publicroom ’>

<value >1</value>
</field >
<field

label=’Make␣Room␣Persistent?’
type=’boolean ’
var=’muc#roomconfig_persistentroom ’>

<value >0</value>
</field >
<field

label=’Make␣Room␣Moderated?’
type=’boolean ’

91

10 OWNER USE CASES

var=’muc#roomconfig_moderatedroom ’>
<value >0</value>

</field >
<field

label=’Make␣Room␣Members -Only?’
type=’boolean ’
var=’muc#roomconfig_membersonly ’>

<value >0</value>
</field >
<field

label=’Password␣Required␣to␣Enter?’
type=’boolean ’
var=’muc#roomconfig_passwordprotectedroom ’>

<value >0</value>
</field >
<field type=’fixed’>

<value >
If a password is required to enter this room ,
you must specify the password below.

</value >
</field >
<field

label=’Password ’
type=’text -private ’
var=’muc#roomconfig_roomsecret ’/>

<field
label=’Who␣May␣Discover␣Real␣JIDs?’
type=’list -single ’
var=’muc#roomconfig_whois ’>

<option label=’Moderators␣Only’>
<value >moderators </value>

</option >
<option label=’Anyone ’>

<value >anyone </value>
</option >

</field >
<field type=’fixed’>

<value >
You may specify additional people who have
administrative privileges in the room. Please
provide one Jabber ID per line.

</value >
</field >
<field

label=’Room␣Admins ’
type=’jid -multi’
var=’muc#roomconfig_roomadmins ’/>

<field type=’fixed’>
<value >

92

10 OWNER USE CASES

You may specify additional owners for this
room. Please provide one Jabber ID per line.

</value >
</field >
<field

label=’Room␣Owners ’
type=’jid -multi’
var=’muc#roomconfig_roomowners ’/>

</x>
</query >

</iq>

Note: The _whois configuration option specifies whether the room is non-anonymous (a
value of ”anyone”), semi-anonymous (a value of ”moderators”), or fully anonmyous (a value
of ”none”, not shown here).
If there are no configuration options available, the service MUST return an empty query
element to the room owner:

Listing 158: Service Informs Owner that No Configuration is Possible
<iq from=’coven@chat.shakespeare.lit’

id=’create1 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/muc#owner ’/>
</iq>

The room owner SHOULD then fill out the form and submit it to the service.

Listing 159: Owner Submits Configuration Form
<iq from=’crone1@shakespeare.lit/desktop ’

id=’create2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#owner ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’>
<value >http: // jabber.org/protocol/muc#roomconfig </value>

</field >
<field var=’muc#roomconfig_roomname ’>

<value >A Dark Cave</value>
</field >
<field var=’muc#roomconfig_roomdesc ’>

<value >The place for all good witches!</value>
</field >
<field var=’muc#roomconfig_enablelogging ’>

<value >0</value>
</field >

93

10 OWNER USE CASES

<field var=’muc#roomconfig_changesubject ’>
<value >1</value>

</field >
<field var=’muc#roomconfig_allowinvites ’>

<value >0</value>
</field >
<field var=’muc#roomconfig_maxusers ’>

<value >10</value>
</field >
<field var=’muc#roomconfig_publicroom ’>

<value >0</value>
</field >
<field var=’muc#roomconfig_persistentroom ’>

<value >0</value>
</field >
<field var=’muc#roomconfig_moderatedroom ’>

<value >0</value>
</field >
<field var=’muc#roomconfig_membersonly ’>

<value >0</value>
</field >
<field var=’muc#roomconfig_passwordprotectedroom ’>

<value >1</value>
</field >
<field var=’muc#roomconfig_roomsecret ’>

<value >cauldronburn </value>
</field >
<field var=’muc#roomconfig_whois ’>

<value >moderators </value>
</field >
<field var=’muc#roomconfig_roomadmins ’>

<value >wiccarocks@shakespeare.lit</value >
<value >hecate@shakespeare.lit</value >

</field >
</x>

</query >
</iq>

If room creation is successful, the service MUST inform the new room owner of success:

Listing 160: Service Informs New Room Owner of Success
<iq from=’coven@chat.shakespeare.lit’

id=’create2 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

If the room creation fails because the specified room configuration options violate one or
more service policies (e.g., because the password for a password-protected room is blank), the

94

10 OWNER USE CASES

service MUST return a <not-acceptable/> error.

Listing 161: Service Informs Owner that Requested Configuration Options Are Unacceptable
<iq from=’coven@chat.shakespeare.lit’

id=’create2 ’
to=’crone1@shakespeare.lit/desktop ’
type=’error ’>

<error type=’modify ’>
<not -acceptable xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

Alternatively, the room owner MAY cancel the configuration process:

Listing 162: Owner Cancels Initial Configuration
<iq from=’crone1@shakespeare.lit/desktop ’

id=’create2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#owner ’>
<x xmlns=’jabber:x:data ’ type=’cancel ’/>

</query >
</iq>

If the room owner cancels the initial configuration, the service SHOULD destroy the room,
making sure to send unavailable presence to the room owner (see the ”Destroying a Room”
use case for protocol details).
If the room owner becomes unavailable for any reason before submitting the form (e.g., a lost
connection), the service will receive a presence stanza of type ”unavailable” from the owner
to the owner’s <room@service/nick> or to <room@service> (or both). The service MUST then
destroy the room, sending a presence stanza of type ”unavailable” from the room to the owner
including a <destroy/> element and reason (if provided) as defined in the Destroying a Room
section of this document.

10.1.4 Requesting a Unique Room Name

In some situations (e.g., when Converting a One-to-One Chat Into a Conference), the room
creator may want to request a unique room name before attempting to create the room (e.g.,
to avoid the possibility of a room conflict). In order to facilitate this, a service MAY support
the feature described in this section. (If a service does support this feature, it MUST return
a feature of ’http://jabber.org/protocol/muc#unique’ in its response to service discovery
information requests.)
The room creator requests a unique room name by sending an IQ-get to
the service itself, containing an empty <unique/> element qualified by the

95

10 OWNER USE CASES

’http://jabber.org/protocol/muc#unique’ namespace:

Listing 163: Entity Requests Unique Room Name
<iq from=’crone1@shakespeare.lit/desktop ’

id=’unique1 ’
to=’chat.shakespeare.lit’
type=’get’>

<unique xmlns=’http:// jabber.org/protocol/muc#unique ’/>
</iq>

If the service supports this feature, it SHOULD return a unique room name as the XML
character data of the <unique/> element (but not create the room):

Listing 164: Service Returns Unique Room Name
<iq from=’chat.shakespeare.lit’

id=’unique1 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’>

<unique xmlns=’http:// jabber.org/protocol/muc#unique ’>
6d9423a55f499b29ad20bf7b2bdea4f4b885ead1

</unique >
</iq>

The service MAY refuse to return a unique room name to entities that are not entitled to
create rooms, entities that have sent an excessive number of requests for unique room names,
etc.
The service MAY use any algorithm that ensures the creation of a room name that will be
permanently unique in the context of the service (e.g., a SHA-1 hash of the requesting JID,
datetime, and random salt).
The room creator would then use the XML character data of the <unique/> element as the
node identifier portion of the room JID it requests:

Listing 165: Owner Creates RoomWith Unique Name
<presence

from=’crone1@shakespeare.lit/desktop ’
to=’6d9423a55f499b29ad20bf7b2bdea4f4b885ead1@chat.shakespeare.lit/

firstwitch ’>
<x xmlns=’http: // jabber.org/protocol/muc’/>

</presence >

10.2 Subsequent Room Configuration

At any time after specifying the initial configuration of the room, a room owner may want to
change the configuration. In order to initiate this process, a room owner MUST request a new

96

10 OWNER USE CASES

configuration form from the room by sending an IQ to <room@service> containing an empty
<query/> element qualified by the ’http://jabber.org/protocol/muc#owner’ namespace.

Listing 166: Owner Requests Configuration Form
<iq from=’crone1@shakespeare.lit/desktop ’

id=’config1 ’
to=’coven@chat.shakespeare.lit’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/muc#owner ’/>
</iq>

If the <user@host> of the ’from’ address does not match the bare JID of a room owner, the
service MUST return a <forbidden/> error to the sender:

Listing 167: Service Denies Configuration Access to Non-Owner
<iq from=’coven@chat.shakespeare.lit’

id=’configures ’
to=’wiccarocks@shakespeare.lit/laptop ’
type=’error ’>

<query xmlns=’http:// jabber.org/protocol/muc#owner ’/>
<error type=’auth’>

<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

Otherwise, the service MUST send a configuration form to the room owner with the current
options set as defaults:

Listing 168: Service Sends Configuration Form to Owner
<iq from=’coven@chat.shakespeare.lit’

id=’config1 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/muc#owner ’>
<x xmlns=’jabber:x:data ’ type=’form’>

<title >Configuration for ”coven” Room</title >
<instructions >

Complete this form to make changes to
the configuration of your room.

</instructions >
<field

type=’hidden ’
var=’FORM_TYPE ’>

<value >http: // jabber.org/protocol/muc#roomconfig </value>
</field >

97

10 OWNER USE CASES

<field
label=’Natural -Language␣Room␣Name’
type=’text -single ’
var=’muc#roomconfig_roomname ’>

<value >A Dark Cave</value>
</field >
<field

label=’Short␣Description␣of␣Room’
type=’text -single ’
var=’muc#roomconfig_roomdesc ’>

<value >The place for all good witches!</value>
</field >
<field

label=’Enable␣Public␣Logging?’
type=’boolean ’
var=’muc#roomconfig_enablelogging ’>

<value >0</value>
</field >
<field

label=’Allow␣Occupants␣to␣Change␣Subject?’
type=’boolean ’
var=’muc#roomconfig_changesubject ’>

<value >0</value>
</field >
<field

label=’Allow␣Occupants␣to␣Invite␣Others?’
type=’boolean ’
var=’muc#roomconfig_allowinvites ’>

<value >0</value>
</field >
<field

label=’Maximum␣Number␣of␣Occupants ’
type=’list -single ’
var=’muc#roomconfig_maxusers ’>

<value >10</value>
<option label=’10’><value>10</value ></option >
<option label=’20’><value>20</value ></option >
<option label=’30’><value>30</value ></option >
<option label=’50’><value>50</value ></option >
<option label=’100’><value>100</value ></option >
<option label=’None’><value>none</value ></option >

</field >
<field

label=’Roles␣for␣which␣Presence␣is␣Broadcast ’
type=’list -multi’
var=’muc#roomconfig_presencebroadcast ’>

<value >moderator </value>
<value >participant </value>
<value >visitor </value>

98

10 OWNER USE CASES

<option label=’Moderator ’><value >moderator </value></option >
<option label=’Participant ’><value >participant </value></option

>
<option label=’Visitor ’><value >visitor </value></option >

</field >
<field

label=’Roles␣and␣Affiliations␣that␣May␣Retrieve␣Member␣List’
type=’list -multi’
var=’muc#roomconfig_getmemberlist ’>

<value >moderator </value>
<value >participant </value>
<value >visitor </value>
<option label=’Moderator ’><value >moderator </value></option >
<option label=’Participant ’><value >participant </value></option

>
<option label=’Visitor ’><value >visitor </value></option >

</field >
<field

label=’Make␣Room␣Publicly␣Searchable?’
type=’boolean ’
var=’muc#roomconfig_publicroom ’>

<value >0</value>
</field >
<field

label=’Make␣Room␣Persistent?’
type=’boolean ’
var=’muc#roomconfig_persistentroom ’>

<value >0</value>
</field >
<field

label=’Make␣Room␣Moderated?’
type=’boolean ’
var=’muc#roomconfig_moderatedroom ’>

<value >0</value>
</field >
<field

label=’Make␣Room␣Members␣Only?’
type=’boolean ’
var=’muc#roomconfig_membersonly ’>

<value >0</value>
</field >
<field

label=’Password␣Required␣for␣Entry?’
type=’boolean ’
var=’muc#roomconfig_passwordprotectedroom ’>

<value >1</value>
</field >
<field type=’fixed’>

<value >

99

10 OWNER USE CASES

If a password is required to enter this room ,
you must specify the password below.

</value >
</field >
<field

label=’Password ’
type=’text -private ’
var=’muc#roomconfig_roomsecret ’>

<value >cauldronburn </value>
</field >
<field

label=’Who␣May␣Discover␣Real␣JIDs?’
type=’list -single ’
var=’muc#roomconfig_whois ’>

<value >moderators </value>
<option label=’Moderators␣Only’>

<value >moderators </value>
</option >
<option label=’Anyone ’>

<value >anyone </value>
</option >

</field >
<field type=’fixed’>

<value >
You may specify additional people who have
administrative privileges in the room. Please
provide one Jabber ID per line.

</value >
</field >
<field

label=’Room␣Admins ’
type=’jid -multi’
var=’muc#roomconfig_roomadmins ’>

<value >wiccarocks@shakespeare.lit</value >
<value >hecate@shakespeare.lit</value >

</field >
<field type=’fixed’>

<value >
You may specify additional owners for this
room. Please provide one Jabber ID per line.

</value >
</field >
<field

label=’Room␣Owners ’
type=’jid -multi’
var=’muc#roomconfig_roomowners ’/>

</x>
</query >

</iq>

100

10 OWNER USE CASES

If there are no configuration options available, the service MUST return an empty query
element to the room owner as shown in the previous use case.
The room owner SHOULD then submit the form with updated configuration information.
Alternatively, the room owner MAY cancel the configuration process:

Listing 169: Owner Cancels Subsequent Configuration
<iq from=’crone1@shakespeare.lit/desktop ’

id=’config2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#owner ’>
<x xmlns=’jabber:x:data ’ type=’cancel ’/>

</query >
</iq>

If the room owner cancels the subsequent configuration, the service MUST leave the config-
uration of the room as it was before the room owner initiated the subsequent configuration
process.
If as a result of a change in the room configuration a room admin loses administrative
privileges while the admin is in the room, the room MUST send updated presence for that
individual to all occupants, denoting the change in status by including an <x/> element
qualified by the ’http://jabber.org/protocol/muc#user’ namespace and containing an <item/>
child with the ’affiliation’ attribute set to a value of ”member” and the ’role’ attribute set
to a value of ”participant” or ”visitor” as appropriate for the affiliation level and the room type:

Listing 170: Service Notes Loss of Admin Affiliation
<presence

from=’coven@chat.shakespeare.lit/secondwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’wiccarocks@shakespeare.lit/laptop ’
role=’participant ’/>

</x>
</presence >

[...]

If as a result of a change in the room configuration a user gains administrative privileges
while the user is in the room, the room MUST send updated presence for that individual to
all occupants, denoting the change in status by including an <x/> element qualified by the
’http://jabber.org/protocol/muc#user’ namespace and containing an <item/> child with the
’affiliation’ attribute set to a value of ”admin” and the ’role’ attribute set to a value of ”admin”:

101

10 OWNER USE CASES

Listing 171: Service Notes Gain of Admin Affiliation to All Users
<presence

from=’coven@chat.shakespeare.lit/secondwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’admin’

jid=’wiccarocks@shakespeare.lit/laptop ’
role=’moderator ’/>

</x>
</presence >

[...]

If as a result of a change in the room configuration a room owner loses owner privileges
while that owner is in the room, the room MUST send updated presence for that individual
to all occupants, denoting the change in status by including an <x/> element qualified by the
’http://jabber.org/protocol/muc#user’ namespace and containing an <item/> child with the
’affiliation’ attribute set to a value of ”admin” and the ’role’ attribute set to an appropriate
value given the affiliation and room type (”moderator” is recommended).

Listing 172: Service Notes Loss of Owner Affiliation
<presence

from=’coven@chat.shakespeare.lit/secondwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’admin’

jid=’wiccarocks@shakespeare.lit/laptop ’
role=’moderator ’/>

</x>
</presence >

[...]

A service MUST NOT allow an owner to revoke his or her own ownership privileges if there are
no other owners; if an owner attempts to do this, the service MUST return a <conflict/> error
to the owner. However, a service SHOULD allow an owner to revoke his or her own ownership
privileges if there are other owners. I.e. a service MUST NOT allow the owner list to become
empty.
If as a result of a change in the room configuration a user gains ownership privileges while
the user is in the room, the room MUST send updated presence for that individual to all
occupants, denoting the change in status by including an <x/> element qualified by the
’http://jabber.org/protocol/muc#user’ namespace and containing an <item/> child with the
’affiliation’ attribute set to a value of ”owner” and the ’role’ attribute set to an appropriate
value given the affiliation and room type (”moderator” is recommended).

102

10 OWNER USE CASES

Listing 173: Service Notes Gain of Owner Affiliation to All Users
<presence

from=’coven@chat.shakespeare.lit/secondwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’owner’

jid=’wiccarocks@shakespeare.lit/laptop ’
role=’moderator ’/>

</x>
</presence >

[...]

If as a result of a change in the room configuration the room type is changed to members-only
but there are non-members in the room, the service MUST remove any non-members from
the room and include a status code of 322 in the presence unavailable stanzas sent to those
users as well as any remaining occupants.

10.2.1 Notification of Configuration Changes

A room MUST send notification to all occupants when the room configuration changes
in a way that has an impact on the privacy or security profile of the room. This notifi-
cation shall consist of a <message/> stanza containing an <x/> element qualified by the
’http://jabber.org/protocol/muc#user’ namespace, which shall contain only a <status/>
element with an appropriate value for the ’code’ attribute. Here is an example:

Listing 174: Configuration Status Code
<message from=’coven@chat.shakespeare.lit’

to=’crone1@shakespeare.lit/desktop ’
type=’groupchat ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<status code=’170’/>

</x>
</message >

The codes to be generated as a result of a privacy-related change in room configuration are as
follows:

• If room logging is now enabled, status code 170.

• If room logging is now disabled, status code 171.

• If the room is now non-anonymous, status code 172.

• If the room is now semi-anonymous, status code 173.

103

10 OWNER USE CASES

• If the room is now fully-anonymous, status code 174.

For any other configuration change, the room SHOULD send status code 104 so that interested
occupants can retrieve the updated room configuration if desired.

10.3 Granting Ownership Privileges to a User

If allowed by an implementation, an owner MAY grant ownership privileges to another user;
this is done by changing the user’s affiliation to ”owner”:

Listing 175: Owner Grants Ownership Privileges
<iq from=’crone1@shakespeare.lit/desktop ’

id=’owner1 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’owner’

jid=’hecate@shakespeare.lit’/>
</query >

</iq>

The <reason/> element is OPTIONAL.

Listing 176: Owner Grants Ownership Privileges (With a Reason)
<iq from=’crone1@shakespeare.lit/desktop ’

id=’owner1 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’owner’

jid=’hecate@shakespeare.lit’>
<reason >A worthy witch indeed!</reason >

</item>
</query >

</iq>

The service MUST add the user to the owner list and then inform the owner of success:

Listing 177: Service Informs Owner of Success
<iq from=’coven@chat.shakespeare.lit’

id=’owner1 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

104

10 OWNER USE CASES

If the user is in the room, the service MUST then send updated presence from this individual
to all occupants, indicating the granting of ownership privileges by including an <x/> ele-
ment qualified by the ’http://jabber.org/protocol/muc#user’ namespace and containing an
<item/> child with the ’affiliation’ attribute set to a value of ”owner” and the ’role’ attribute
set to an appropriate value given the affiliation and room type (”moderator” is recommended).

Listing 178: Service Sends Notice of Ownership Privileges to All Occupants
<presence

from=’coven@chat.shakespeare.lit/hecate ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’owner’

jid=’hecate@shakespeare.lit’
role=’moderator ’/>

</x>
</presence >

[...]

If the user is not in the room, the service MAY send a message from the room itself to the
room occupants, indicating the granting of ownership privileges by including an <x/> element
qualified by the ’http://jabber.org/protocol/muc#user’ namespace and containing an <item/>
child with the ’affiliation’ attribute set to a value of ”owner”.

Listing 179: Service Sends Notice of Ownership Privileges to All Occupants
<message

from=’chat.shakespeare.lit’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hecate@shakespeare.lit’
role=’none’/>

</x>
</message >

[...]

10.4 Granting Ownership Privileges to a Service

If allowed by an implementation, an owner MAY grant ownership privileges all users of a
service; this is done by adding the service’s domain to the owner list:

Listing 180: Owner Grants Ownership Privileges
<iq from=’crone1@shakespeare.lit/desktop ’

105

10 OWNER USE CASES

id=’owner2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’owner’

jid=’hamlet.lit’/>
</query >

</iq>

The <reason/> element is OPTIONAL.

Listing 181: Owner Grants Ownership Privileges (With a Reason)
<iq from=’crone1@shakespeare.lit/desktop ’

id=’owner2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’owner’

jid=’hamlet.lit’>
<reason >There is nothing either good or bad , but thinking makes

it so.</reason >
</item>

</query >
</iq>

The service MUST add the domain to the owner list and then inform the owner of success:

Listing 182: Service Informs Owner of Success
<iq from=’coven@chat.shakespeare.lit’

id=’owner2 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

If an affected user is in the room, the service MUST then send updated presence from this in-
dividual to all occupants, indicating the granting of ownership privileges by including an <x/>
element qualified by the ’http://jabber.org/protocol/muc#user’ namespace and containing
an <item/> child with the ’affiliation’ attribute set to a value of ”owner” and the ’role’ attribute
set to an appropriate value given the affiliation and room type (”moderator” is recommended).

Listing 183: Service Sends Notice of Ownership Privileges to All Occupants
<presence

from=’coven@chat.shakespeare.lit/hecate ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’owner’

106

10 OWNER USE CASES

jid=’claudius@hamlet.lit’
role=’moderator ’/>

</x>
</presence >

[...]

The service MAY send a message from the room itself to the room occupants, indicat-
ing the granting of ownership privileges by including an <x/> element qualified by the
’http://jabber.org/protocol/muc#user’ namespace and containing an <item/> child with the
’affiliation’ attribute set to a value of ”owner”.

Listing 184: Service Sends Notice of Ownership Privileges to All Occupants
<message

from=’chat.shakespeare.lit’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’hamlet.lit’
role=’none’/>

</x>
</message >

[...]

10.5 Revoking Ownership Privileges

An implementation MAY allow an owner to revoke an entity’s ownership privileges; this is
done by changing the entity’s affiliation to something other than ”owner”:

Listing 185: Owner Revokes Ownership Privileges
<iq from=’crone1@shakespeare.lit/desktop ’

id=’owner2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’admin’

jid=’hecate@shakespeare.lit’/>
</query >

</iq>

The <reason/> element is OPTIONAL.

Listing 186: Owner Revokes Ownership Privileges (With a Reason)

107

10 OWNER USE CASES

<iq from=’crone1@shakespeare.lit/desktop ’
id=’owner2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’admin’

jid=’hecate@shakespeare.lit’>
<reason >Not so worthy after all!</reason >

</item>
</query >

</iq>

A service MUST NOT allow an owner to revoke his or her own ownership privileges if there are
no other owners; if an owner attempts to do this, the service MUST return a <conflict/> error
to the owner. However, a service SHOULD allow an owner to revoke his or her own ownership
privileges if there are other owners.
If an implementation does not allow one owner to revoke another user’s ownership privileges,
the implementation MUST return a <not-authorized/> error to the owner who made the
request.
Note: Allowing an owner to remove another user’s ownership privileges can compromise the
control model for room management; therefore this feature is OPTIONAL, and implemen-
tations are encouraged to support owner removal through an interface that is open only to
individuals with service-wide administrative privileges.
In all other cases, the service MUST remove the entity from the owner list and then inform
the owner of success:

Listing 187: Service Informs Owner of Success
<iq from=’coven@chat.shakespeare.lit’

id=’owner2 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

If an affected user is in the room, the service MUST then send updated presence from this
individual to all occupants, indicating the loss of ownership privileges by sending a presence
element that contains an <x/> element qualified by the ’http://jabber.org/protocol/muc#user’
namespace and containing an <item/> child with the ’affiliation’ attribute set to a value other
than ”owner” and the ’role’ attribute set to an appropriate value:

Listing 188: Service Notes Loss of Owner Affiliation
<presence

from=’coven@chat.shakespeare.lit/secondwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’admin’

jid=’hecate@shakespeare.lit’

108

10 OWNER USE CASES

role=’moderator ’/>
</x>

</presence >

[...]

If no affected user is in the room, or the entity is identified by a domain, the service MAY send
a message from the room itself to the room occupants, indicating the loss of ownership priv-
ileges by including an <x/> element qualified by the ’http://jabber.org/protocol/muc#user’
namespace and containing an <item/> child with the ’affiliation’ attribute set to a value other
than ”owner”.

Listing 189: Service Notes Loss of Owner Affiliation
<message

from=’chat.shakespeare.lit’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’admin’

jid=’hecate@shakespeare.lit’
role=’none’/>

</x>
</message >

[...]

10.6 Modifying the Owner List

If allowed by an implementation, a room owner may want to modify the owner list. To do so,
the owner first requests the owner list by querying the room for all entities with an affiliation
of ’owner’.

Listing 190: Owner Requests Owner List
<iq from=’bard@shakespeare.lit/globe’

id=’owner3 ’
to=’coven@chat.shakespeare.lit’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’owner’/>

</query >
</iq>

If the ’from’ address does not match the JID of a room owner, the service MUST return a
<forbidden/> error to the sender.
Otherwise, the service MUST then return the owner list to the owner; each itemMUST include
the ’affiliation’ and ’jid’ attributes and MAY include the ’nick’ and ’role’ attributes for any

109

10 OWNER USE CASES

owner that is currently an occupant:

Listing 191: Service Sends Owner List to Owner
<iq from=’coven@chat.shakespeare.lit’

id=’owner3 ’
to=’bard@shakespeare.lit/globe’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’owner’

jid=’crone1@shakespeare.lit’/>
</query >

</iq>

The owner MAY then modify the owner list. In order to do so, the owner MUST send the
changed items (i.e., only the ”delta”) back to the service; 22 each item MUST include the
’affiliation’ and ’jid’ attributes but SHOULD NOT include the ’nick’ attribute and MUST NOT
include the ’role’ attribute (which is used to manage roles such as participant rather than the
owner affiliation):

Listing 192: Owner Sends Modified Owner List to Service
<iq from=’bard@shakespeare.lit/globe’

id=’owner4 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’owner’

jid=’hecate@shakespeare.lit’/>
</query >

</iq>

Only owners shall be allowed to modify the owner list. If a non-owner attempts to view or
modify the owner list, the service MUST deny the request and return a <forbidden/> error to
the sender:

Listing 193: Service Returns Error on Attempt by Non-Owner to Modify Owner List
<iq from=’coven@chat.shakespeare.lit’

id=’ownertest ’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’owner’

jid=’hecate@shakespeare.lit’/>

22This is different from the behavior of room configuration, wherein the ’muc#roomconfig_roomowners’ field
specifies the full list of room owners, not the delta.

110

10 OWNER USE CASES

</query >
<error type=’auth’>

<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

A service MUST NOT allow an owner to revoke his or her own ownership privileges if there are
no other owners; if an owner attempts to do this, the service MUST return a <conflict/> error
to the owner. However, a service SHOULD allow an owner to revoke his or her own ownership
privileges if there are other owners.
In all other cases, the service MUST modify owner list and then inform the owner of success:

Listing 194: Service Informs Owner of Success
<iq from=’coven@chat.shakespeare.lit’

id=’owner4 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

The service MUST also send presence notifications related to any affiliation changes that
result from modifying the owner list as previously described.

10.7 Granting Administrative Privileges to a User

An owner can grant administrative privileges to a member or unaffiliated user; this is done by
changing the user’s affiliation to ”admin”:

Listing 195: Owner Grants Admin Privileges
<iq from=’crone1@shakespeare.lit/desktop ’

id=’admin1 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’admin’

jid=’wiccarocks@shakespeare.lit’/>
</query >

</iq>

The <reason/> element is OPTIONAL.

Listing 196: Owner Grants Admin Privileges (With a Reason)
<iq from=’crone1@shakespeare.lit/desktop ’

id=’admin1 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

111

10 OWNER USE CASES

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’admin’

jid=’wiccarocks@shakespeare.lit’>
<reason >A worthy witch indeed!</reason >

</item>
</query >

</iq>

The service MUST add the user to the admin list and then inform the owner of success:

Listing 197: Service Informs Owner of Success
<iq from=’coven@chat.shakespeare.lit’

id=’admin1 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

If the user is in the room, the service MUST then send updated presence from this individual
to all occupants, indicating the granting of administrative privileges by including an <x/>
element qualified by the ’http://jabber.org/protocol/muc#user’ namespace and containing
an <item/> child with the ’affiliation’ attribute set to a value of ”admin” and the ’role’ attribute
set to an appropriate value given the affiliation and room type.

Listing 198: Service Sends Notice of Administrative Privileges to All Occupants
<presence

from=’coven@chat.shakespeare.lit/secondwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’admin’

jid=’wiccarocks@shakespeare.lit’
role=’moderator ’/>

</x>
</presence >

[...]

If the user is not in the room, the service MAY send a message from the room itself to the
room occupants, indicating the granting of administrative privileges by including an <x/>
element qualified by the ’http://jabber.org/protocol/muc#user’ namespace and containing
an <item/> child with the ’affiliation’ attribute set to a value of ”admin”.

Listing 199: Service Sends Notice of Administrative Privileges to All Occupants
<message

from=’chat.shakespeare.lit’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>

112

10 OWNER USE CASES

<item affiliation=’admin’
jid=’wiccarocks@shakespeare.lit’
role=’none’/>

</x>
</message >

[...]

10.8 Granting Administrative Privileges to all Users of a Service

An owner can grant administrative privileges to all users of a service; this is done by changing
the service’s affiliation to ”admin”:

Listing 200: Owner Grants Admin Privileges
<iq from=’crone1@shakespeare.lit/desktop ’

id=’admin1 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’admin’

jid=’hamlet.lit’/>
</query >

</iq>

The <reason/> element is OPTIONAL.

Listing 201: Owner Grants Admin Privileges (With a Reason)
<iq from=’crone1@shakespeare.lit/desktop ’

id=’admin1 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’admin’

jid=’hamlet.lit’>
<reason >There is nothing either good or bad , but thinking

makes it so.</reason >
</item>

</query >
</iq>

The service MUST add the service’s domain to the admin list and then inform the owner of
success:

Listing 202: Service Informs Owner of Success

113

10 OWNER USE CASES

<iq from=’coven@chat.shakespeare.lit’
id=’admin1 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

If an affected user is in the room, the service MUST then send updated presence from this
individual to all occupants, indicating the granting of administrative privileges by including
an <x/> element qualified by the ’http://jabber.org/protocol/muc#user’ namespace and
containing an <item/> child with the ’affiliation’ attribute set to a value of ”admin” and the
’role’ attribute set to an appropriate value given the affiliation and room type.

Listing 203: Service Sends Notice of Administrative Privileges to All Occupants
<presence

from=’coven@chat.shakespeare.lit/secondwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’admin’

jid=’claudius@hamlet.lit’
role=’moderator ’/>

</x>
</presence >

[...]

The service MAY send a message from the room itself to the room occupants, indicating
the granting of administrative privileges by including an <x/> element qualified by the
’http://jabber.org/protocol/muc#user’ namespace and containing an <item/> child with the
’affiliation’ attribute set to a value of ”admin”.

Listing 204: Service Sends Notice of Administrative Privileges to All Occupants
<message

from=’chat.shakespeare.lit’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’admin’

jid=’hamlet.lit’
role=’none’/>

</x>
</message >

[...]

10.9 Revoking Administrative Privileges

An owner may want to revoke an entity’s administrative privileges; this is done by changing
the entity’s affiliation to something other than ”admin” or ”owner”:

114

10 OWNER USE CASES

Listing 205: Owner Revokes Administrative Privileges
<iq from=’crone1@shakespeare.lit/desktop ’

id=’admin2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’member ’

jid=’wiccarocks@shakespeare.lit’/>
</query >

</iq>

The <reason/> element is OPTIONAL.

Listing 206: Owner Revokes Administrative Privileges (With a Reason)
<iq from=’crone1@shakespeare.lit/desktop ’

id=’admin2 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’member ’

jid=’wiccarocks@shakespeare.lit’>
<reason >Not so worthy after all!</reason >

</item>
</query >

</iq>

The serviceMUST remove the entity from the admin list and then inform the owner of success:

Listing 207: Service Informs Owner of Success
<iq from=’coven@chat.shakespeare.lit’

id=’admin2 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

If an affected is in the room, the serviceMUST then send updated presence from this individual
to all occupants, indicating the loss of administrative privileges by sending a presence element
that contains an <x/> element qualified by the ’http://jabber.org/protocol/muc#user’ names-
pace and containing an <item/> child with the ’affiliation’ attribute set to a value other than
”admin” or ”owner” and the ’role’ attribute set to an appropriate value given the affiliation
level and the room type:

Listing 208: Service Notes Loss of Admin Affiliation
<presence

115

10 OWNER USE CASES

from=’coven@chat.shakespeare.lit/secondwitch ’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’wiccarocks@shakespeare.lit’
role=’participant ’/>

</x>
</presence >

[...]

The service MAY send a message from the room itself to the room occupants, indicat-
ing the loss of administrative privileges by including an <x/> element qualified by the
’http://jabber.org/protocol/muc#user’ namespace and containing an <item/> child with the
’affiliation’ attribute set to a value other than ”admin”.

Listing 209: Service Notes Loss of Admin Affiliation
<message

from=’chat.shakespeare.lit’
to=’crone1@shakespeare.lit/desktop ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’member ’

jid=’wiccarocks@shakespeare.lit’
role=’none’/>

</x>
</message >

[...]

10.10 Modifying the Admin List

A room owner may want to modify the admin list. To do so, the owner first requests the admin
list by querying the room for all entities with an affiliation of ’admin’.

Listing 210: Owner Requests Admin List
<iq from=’bard@shakespeare.lit/desktop ’

id=’admin3 ’
to=’coven@chat.shakespeare.lit’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’admin’/>

</query >
</iq>

If the ’from’ address does not match the JID of a room owner, the service MUST return a
<forbidden/> error to the sender.

116

10 OWNER USE CASES

Otherwise, the service MUST then return the admin list to the owner; each itemMUST include
the ’affiliation’ and ’jid’ attributes and MAY include the ’nick’ and ’role’ attributes for any
admin that is currently an occupant:

Listing 211: Service Sends Admin List to Owner
<iq from=’coven@chat.shakespeare.lit’

id=’admin3 ’
to=’bard@shakespeare.lit/globe’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’admin’

jid=’wiccarocks@shakespeare.lit’
nick=’secondwitch ’/>

<item affiliation=’admin’
jid=’hag66@shakespeare.lit’/>

</query >
</iq>

The owner MAY then modify the admin list. In order to do so, the owner MUST send the
changed items (i.e., only the ”delta”) back to the service; 23 each item MUST include the
’affiliation’ attribute (normally set to a value of ”admin” or ”none”) and ’jid’ attribute but
SHOULD NOT include the ’nick’ attribute and MUST NOT include the ’role’ attribute (which is
used to manage roles such as participant rather than the admin affiliation):

Listing 212: Owner Sends Modified Admin List to Service
<iq from=’bard@shakespeare.lit/globe’

id=’admin4 ’
to=’coven@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’none’

jid=’hag66@shakespeare.lit’>
</item>
<item affiliation=’admin’

jid=’hecate@shakespeare.lit’>
</item>

</query >
</iq>

Only owners shall be allowed to modify the admin list. If a non-owner attempts to view or
modify the admin list, the service MUST deny the request and return a <forbidden/> error to
the sender:

23This is different from the behavior of room configuration, wherein the ’muc#roomconfig_roomadmins’ field
specifies the full list of room admins, not the delta.

117

10 OWNER USE CASES

Listing 213: Service Returns Error on Attempt by Non-Owner to Modify Admin List
<iq from=’coven@chat.shakespeare.lit’

id=’admintest ’
to=’hag66@shakespeare.lit/pda’
type=’error ’>

<query xmlns=’http:// jabber.org/protocol/muc#admin ’>
<item affiliation=’admin’

jid=’hecate@shakespeare.lit’/>
</query >
<error type=’auth’>

<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

Otherwise, the service MUST modify the admin list and then inform the owner of success:

Listing 214: Service Informs Owner of Success
<iq from=’coven@chat.shakespeare.lit’

id=’admin4 ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

The service MUST also send presence notifications related to any affiliation changes that
result from modifying the admin list as previously described.

10.11 Destroying a Room

A room owner MUST be able to destroy a room, especially if the room is persistent. The
workflow is as follows:

1. The room owner requests that the room be destroyed, specifying a reason and an
alternate venue if desired.

2. The room removes all users from the room (including appropriate information about
the alternate location and the reason for being removed) and destroys the room, even if
it was defined as persistent.

Other than the foregoing, this document does not specify what (if anything) a MUC service
implementation shall do as a result of a room destruction request. For example, if the room
was defined as persistent, an implementationMAY choose to lock the room ID so that it cannot
be re-used, redirect enter requests to the alternate venue, or invite the current participants
to the new room; however, such behavior is OPTIONAL.

118

10 OWNER USE CASES

In order to destroy a room, the room owner MUST send an IQ set to the address of the
room to be destroyed. The <iq/> stanza shall contain a <query/> element qualified by the
’http://jabber.org/protocol/muc#owner’ namespace, which in turn shall contain a <destroy/>
element. The address of the alternate venue MAY be provided as the value of the <destroy/>
element’s ’jid’ attribute. A password for the alternate venue MAY be provided as the XML
character data of a <password/> child element of the <destroy/> element. The reason for the
room destruction MAY be provided as the XML character data of a <reason/> child element of
the <destroy/> element.
The following examples illustrate the protocol elements to be sent and received:

Listing 215: Owner Submits Room Destruction Request
<iq from=’crone1@shakespeare.lit/desktop ’

id=’begone ’
to=’heath@chat.shakespeare.lit’
type=’set’>

<query xmlns=’http:// jabber.org/protocol/muc#owner ’>
<destroy jid=’coven@chat.shakespeare.lit’>

<reason >Macbeth doth come.</reason >
</destroy >

</query >
</iq>

The service is responsible for removing all the occupants. It SHOULD NOT broadcast presence
stanzas of type ”unavailable” from all occupants, instead sending only one presence stanza of
type ”unavailable” to each occupant so that the user knows he or she has been removed from
the room. If extended presence information specifying the JID of an alternate location and
the reason for the room destruction was provided by the room owner, the presence stanza
MUST include that information.

Listing 216: Service Removes Each Occupant
<presence

from=’heath@chat.shakespeare.lit/firstwitch ’
to=’crone1@shakespeare.lit/desktop ’
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’none’ role=’none’/>
<destroy jid=’coven@chat.shakespeare.lit’>

<reason >Macbeth doth come.</reason >
</destroy >

</x>
</presence >

<presence
from=’heath@chat.shakespeare.lit/secondwitch ’
to=’wiccarocks@shakespeare.lit/laptop ’

119

10 OWNER USE CASES

type=’unavailable ’>
<x xmlns=’http: // jabber.org/protocol/muc#user’>

<item affiliation=’none’ role=’none’/>
<destroy jid=’coven@chat.shakespeare.lit’>

<reason >Macbeth doth come.</reason >
</destroy >

</x>
</presence >

<presence
from=’heath@chat.shakespeare.lit/thirdwitch ’
to=’hag66@shakespeare.lit/pda’
type=’unavailable ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<item affiliation=’none’ role=’none’/>
<destroy jid=’coven@chat.shakespeare.lit’>

<reason >Macbeth doth come.</reason >
</destroy >

</x>
</presence >

Listing 217: Service Informs Owner of Successful Destruction
<iq from=’heath@chat.shakespeare.lit’

id=’begone ’
to=’crone1@shakespeare.lit/desktop ’
type=’result ’/>

If the ’from’ address received on a destroy request does not match the JID of a room owner,
the service MUST return a <forbidden/> error to the sender:

Listing 218: Service Denies Destroy Request Submitted by Non-Owner
<iq from=’heath@chat.shakespeare.lit’

id=’destroytest ’
to=’wiccarocks@shakespeare.lit/laptop ’
type=’error ’>

<query xmlns=’http:// jabber.org/protocol/muc#owner ’>
<destroy jid=’coven@chat.shakespeare.lit’>

<reason >Macbeth doth come.</reason >
</destroy >

</query >
<error type=’auth’>

<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

120

11 ERROR AND STATUS CODES

11 Error and Status Codes

11.1 Error Codes

The error codes associated with the ’http://jabber.org/protocol/muc#user’ namespace are
fairly straightforward, as summarized in the following table. For detailed information about
mapping legacy error codes to XMPP-style error types and conditions, refer to Error Condition
Mappings 24; implementations SHOULD support both legacy and XMPP error handling.

Code Type Element Context Purpose
401 Error Presence Entering a room Inform user that a

password is
required

403 Error Presence Entering a room Inform user that
he or she is
banned from the
room

404 Error Presence Entering a room Inform user that
the room does not
exist

405 Error Presence Entering a room Inform user that
room creation is
restricted

406 Error Presence Entering a room Inform user that
the reserved
roomnick must be
used

407 Error Presence Entering a room Inform user that
he or she is not on
the member list

409 Error Presence Entering a room Inform user that
his or her desired
room nickname is
in use or
registered by
another user

503 Error Presence Entering a room Inform user that
the maximum
number of users
has been reached

This document does not stipulate text strings (i.e., values of the XMPP <text/> element)
associated with the foregoing error conditions.
24XEP-0086: Error Condition Mappings <http://xmpp.org/extensions/xep-0086.html>.

121

http://xmpp.org/extensions/xep-0086.html
http://xmpp.org/extensions/xep-0086.html
http://xmpp.org/extensions/xep-0086.html

13 SECURITY CONSIDERATIONS

11.2 Status Codes

Multi-User Chat uses a <status/> element (specifically, the ’code’ attribute of the <status/>
element) to communicate information about a user’s status in a room. Over time, the number
of status codes has grown quite large, and new status codes continue to be requested of the
author. Therefore, these codes are now documented in a registry maintained by the XMPP
Registrar. For details, refer to the Status Codes Registry section of this document.
Note: In general, MUC status codes tend to follow the ”philosophy” of status codes that is
implicit in RFC 2616 25 and RFC 1893 26 (1xx codes are informational, 2xx codes specify that it
is fine to continue, 3xx codes specify redirects such as being kicked or banned, x3x codes refer
to system status, x7x codes refer to security or policy matters, etc.).
Note: If the MUC protocol were being designed today, it would specify a more flexible,
XML-friendly approach rather than hardcoded status numbers; however, at this point
the pain of changing the status reporting system would be greater than the benefit of
doing so, which is why the status code numbers remain in use. A future version of this
document may define a more XMPP-like approach to status conditions, retaining the code
numbers but supplementing themwithmore descriptive child elements as is done in RFC 3920.

12 Internationalization Considerations

As specified in RFC 3920, XMPP entities (including MUC rooms and MUC services) SHOULD
respect the value of the ’xml:lang’ attribute provided with any given stanza. However,
simultaneous translation of groupchat messages is out of scope for this document.
The status and error codes defined herein enable a client implementation to present a
localized interface; however, definition of the localized text strings for any given language
community is out of scope for this document.
Although the labels for various data form fields are shown here in English, MUC clients
SHOULD present localized text for these fields rather than the English text.

13 Security Considerations

13.1 User Authentication and Authorization

No room entrance authentication or authorization method more secure than cleartext pass-
words is defined or required by this document. However, the risks involved can mitigated by
the use of channel encryption and strong authentication via TLS and SASL as described in RFC

25RFC 2616: Hypertext Transport Protocol -- HTTP/1.1 <http://tools.ietf.org/html/rfc2616>.
26RFC 1893: Enhanced Mail System Status Codes <http://tools.ietf.org/html/rfc1893>.

122

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc1893
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc1893

13 SECURITY CONSIDERATIONS

3920.

13.2 End-to-End Encryption

No end-to-end message or session encryption method is specified herein. Users SHOULD NOT
trust a service to keep secret any text sent through a room.

13.3 Privacy

Depending on room configuration, a room may publicly log all discussions held in the room.
A service MUST warn the user that the room is publicly logged by returning a status code of
”170” with the user’s initial presence, and the user’s client MUST so warn the user if the room
discussion is logged (a user’s client SHOULD also query the room for its configuration prior
to allowing the user to enter in order to ”pre-discover” whether the room is logged). A client
MUST also warn the user if the room’s configuration is subsequently modified to allow room
logging (which the client will discover when the room sends status code 170). Note: In-room
history is different from public room logging, and naturally a room cannot effectively pre-
vent occupants from separately maintaining their own room logs, which may become public;
users SHOULD exercise due caution and consider any room discussions to be effectively public.

13.4 Information Leaks

The ”roominfo” data form used in extended service discovery can result in information leaks,
e.g., the current discussion topic (via the ”roominfo_subject” field). The same is true of
service discovery items (disco#items) requests from outside the room (which could be used to
discover the list of room occupants).
Implementations and deployments are advised to carefully consider the possibility that this
information might be leaked, and to turn off information sharing by default for sensitive data.

13.5 Anonymity

Depending on room configuration, a room MAY expose each occupant’s real JID to other
occupants (if the room is non-anonymous) and will almost certainly expose each occupant’s
real JID to the room owners and administrators (if the room is not fully-anonymous). A service
MUST warn the user that real JIDs are exposed in the room by returning a status code of
”100” with the user’s initial presence, and the user’s client MUST so warn the user (a user’s
client SHOULD also query the room for its configuration prior to allowing the user to enter
in order to ”pre-discover” whether real JIDs are exposed in the room). A client MUST also
warn the user if the room’s configuration is subsequently modified from semi-anonymous
or fully-anonymous to non-anonymous (which the client will discover when the room sends
status code 172) and SHOULD warn the user if the room’s configuration is subsequently

123

13 SECURITY CONSIDERATIONS

modified from fully-anonymous to semi-anonymous (which the client will discover when the
room sends status code 173).

13.6 Denial of Service

Public MUC rooms can be subject to a number of attacks, most of which reduce to denial of
service attacks. Such attacks include but are not limited to:

1. Stuffing the room with a large number of illegitimate occupants and therefore prevent-
ing legitimate users from joining the room.

2. Sending abusivemessages and then leaving the room before a kick or ban can be applied;
such abusive messages include but are not limited to large messages that prevent par-
ticipants from following the conversation thread or room history, personal attacks on
participants (especially room administrators and moderators), offensive text, and links
to spam sites.

3. Making rapid and repeated presence changes.

4. Using long nicknames to route around lack of voice.

5. Abusing the room administrators or other room occupants.

6. Registering multiple nicknames across a service and therefore denying the use of those
nicknames.

7. Mimicking another occupant’s roomnick (e.g., by adding a space at the end or substitut-
ing visually similar characters), then sending messages from that roomnick in an effort
to confuse the occupants.

These attacks can be mitigated but not completely prevented through the liberal use of
administrative actions such as banning, the presence of automated room bots with adminis-
trative privileges, implementation of intelligent content filtering, checking the IP addresses of
connected users (not always possible in a distributed system), applying voice rules to presence
as well as messaging, matching room nicks using more stringent rules than the Resourceprep
profile of stringprep, etc. However, experience has shown that it is impossible to fully prevent
attacks of this kind.

13.7 Other Considerations

See XEP-0203 for security considerations regarding the inclusion and processing of delayed
delivery notations.

124

15 XMPP REGISTRAR CONSIDERATIONS

14 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
27.

15 XMPP Registrar Considerations

The XMPP Registrar 28 includes the following information in its registries.

15.1 Protocol Namespaces

The XMPP Registrar includes the followingMUC-related namespaces in its registry of protocol
namespaces:

• http://jabber.org/protocol/muc

• http://jabber.org/protocol/muc#admin

• http://jabber.org/protocol/muc#owner

• http://jabber.org/protocol/muc#user

15.2 Service Discovery Category/Type

A Multi-User Chat service or room is identified by the ”conference” category and the ”text”
type within Service Discovery.

15.3 Service Discovery Features

There are many features related to a MUC service or room that can be discovered by means
of Service Discovery. The most fundamental of these is the ’http://jabber.org/protocol/muc’
namespace. In addition, a MUC room SHOULD provide information about the specific room
features it implements, such as password protection and room moderation.

27The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

28The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <http://xmpp.org/registrar/>.

125

http://www.iana.org/
http://xmpp.org/registrar/
http://www.iana.org/
http://xmpp.org/registrar/

15 XMPP REGISTRAR CONSIDERATIONS

<var>
<name>http: // jabber.org/protocol/muc#register </name>
<desc>Support for the muc#register FORM_TYPE </desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>http: // jabber.org/protocol/muc#roomconfig </name>
<desc>Support for the muc#roomconfig FORM_TYPE </desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>http: // jabber.org/protocol/muc#roominfo </name>
<desc>Support for the muc#roominfo FORM_TYPE </desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>muc_hidden </name>
<desc>Hidden room in Multi -User Chat (MUC)</desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>muc_membersonly </name>
<desc>Members -only room in Multi -User Chat (MUC)</desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>muc_moderated </name>
<desc>Moderated room in Multi -User Chat (MUC)</desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>muc_nonanonymous </name>
<desc>Non -anonymous room in Multi -User Chat (MUC)</desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>muc_open </name>
<desc>Open room in Multi -User Chat (MUC)</desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>muc_passwordprotected </name>
<desc>Password -protected room in Multi -User Chat (MUC)</desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>muc_persistent </name>
<desc>Persistent room in Multi -User Chat (MUC)</desc>
<doc>XEP -0045 </doc>

126

15 XMPP REGISTRAR CONSIDERATIONS

</var>
<var>

<name>muc_public </name>
<desc>Public room in Multi -User Chat (MUC)</desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>muc_rooms </name>
<desc>List of MUC rooms (each as a separate item)</desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>muc_semianonymous </name>
<desc>Semi -anonymous room in Multi -User Chat (MUC)</desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>muc_temporary </name>
<desc>Temporary room in Multi -User Chat (MUC)</desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>muc_unmoderated </name>
<desc>Unmoderated room in Multi -User Chat (MUC)</desc>
<doc>XEP -0045 </doc>

</var>
<var>

<name>muc_unsecured </name>
<desc>Unsecured room in Multi -User Chat (MUC)</desc>
<doc>XEP -0045 </doc>

</var>

15.4 Well-Known Service Discovery Nodes

The well-known Service Discovery node ’http://jabber.org/protocol/muc#rooms’ enables
discovery of the rooms in which a user is an occupant.
The well-known Service Discovery node ’x-roomuser-item’ enables a user to discover his or
her registered roomnick from outside the room.
The well-known Service Discovery node ’http://jabber.org/protocol/muc#traffic’ enables
discovery of the namespaces that are allowed in traffic sent through a room (see the Allowable
Traffic section of this document).

127

15 XMPP REGISTRAR CONSIDERATIONS

15.5 Field Standardization

Field Standardization for Data Forms 29 defines a process for standardizing the fields used
within Data Forms qualified by a particular namespace. Within MUC, there are four uses
of such forms: room registration (the ”muc#register” FORM_TYPE), requesting voice and
approving voice requests (”muc#request”), room configuration (”muc#roomconfig”), and
service discovery extensions for room information (”muc#roominfo”). The reserved fields are
defined below.

15.5.1 muc#register FORM_TYPE

<form_type >
<name>http: // jabber.org/protocol/muc#register </name>
<doc>XEP -0045 </doc>
<desc>

Forms enabling user registration with a
Multi -User Chat (MUC) room or admin approval
of user registration requests.

</desc>
<field

var=’muc#register_allow ’
type=’boolean ’
label=’Allow␣this␣person␣to␣register␣with␣the␣room?’/>

<field
var=’muc#register_email ’
type=’text -single ’
label=’Email␣Address ’/>

<field
var=’muc#register_faqentry ’
type=’text -multi’
label=’FAQ␣Entry’/>

<field
var=’muc#register_first ’
type=’text -single ’
label=’Given␣Name’/>

<field
var=’muc#register_last ’
type=’text -single ’
label=’Family␣Name’/>

<field
var=’muc#register_roomnick ’
type=’text -single ’
label=’Desired␣Nickname ’/>

<field
var=’muc#register_url ’
type=’text -single ’

29XEP-0068: Field Data Standardization for Data Forms <http://xmpp.org/extensions/xep-0068.html>.

128

http://xmpp.org/extensions/xep-0068.html
http://xmpp.org/extensions/xep-0068.html

15 XMPP REGISTRAR CONSIDERATIONS

label=’Your␣URL’/>
</form_type >

15.5.2 muc#request FORM_TYPE

<form_type >
<name>http: // jabber.org/protocol/muc#request </name>
<doc>XEP -0045 </doc>
<desc>

Forms enabling voice requests in a
Multi -User Chat (MUC) room or admin
approval of such requests.

</desc>
<field var=’muc#role’

type=’text -single ’
label=’Requested␣role’/>

<field var=’muc#jid’
type=’text -single ’
label=’User␣ID’/>

<field var=’muc#roomnick ’
type=’text -single ’
label=’Room␣Nickname ’/>

<field var=’muc#request_allow ’
type=’boolean ’
label=’Whether␣to␣grant␣voice ’/>

</form_type >

15.5.3 muc#roomconfig FORM_TYPE

<form_type >
<name>http: // jabber.org/protocol/muc#roomconfig </name>
<doc>XEP -0045 </doc>
<desc>

Forms enabling creation and configuration of
a Multi -User Chat (MUC) room.

</desc>
<field

var=’muc#roomconfig_allowinvites ’
type=’boolean ’
label=’Whether␣to␣Allow␣Occupants␣to␣Invite␣Others ’/>

<field
var=’muc#roomconfig_changesubject ’
type=’boolean ’
label=’Whether␣to␣Allow␣Occupants␣to␣Change␣Subject ’/>

<field
var=’muc#roomconfig_enablelogging ’
type=’boolean ’

129

15 XMPP REGISTRAR CONSIDERATIONS

label=’Whether␣to␣Enable␣Public␣Logging␣of␣Room␣Conversations ’/>
<field

var=’muc#roomconfig_getmemberlist ’
type=’list -multi’
label=’Roles␣and␣Affiliations␣that␣May␣Retrieve␣Member␣List’/>

<field
var=’muc#roomconfig_lang ’
type=’text -single ’
label=’Natural␣Language␣for␣Room␣Discussions ’/>

<field
var=’muc#roomconfig_pubsub ’
type=’text -single ’
label=’XMPP␣URI␣of␣Associated␣Publish -Subcribe␣Node’/>

<field
var=’muc#roomconfig_maxusers ’
type=’list -single ’
label=’Maximum␣Number␣of␣Room␣Occupants ’/>

<field
var=’muc#roomconfig_membersonly ’
type=’boolean ’
label=’Whether␣an␣Make␣Room␣Members -Only’/>

<field
var=’muc#roomconfig_moderatedroom ’
type=’boolean ’
label=’Whether␣to␣Make␣Room␣Moderated ’/>

<field
var=’muc#roomconfig_passwordprotectedroom ’
type=’boolean ’
label=’Whether␣a␣Password␣is␣Required␣to␣Enter ’/>

<field
var=’muc#roomconfig_persistentroom ’
type=’boolean ’
label=’Whether␣to␣Make␣Room␣Persistent ’/>

<field
var=’muc#roomconfig_presencebroadcast ’
type=’list -multi’
label=’Roles␣for␣which␣Presence␣is␣Broadcast ’/>

<field
var=’muc#roomconfig_publicroom ’
type=’boolean ’
label=’Whether␣to␣Allow␣Public␣Searching␣for␣Room’/>

<field
var=’muc#roomconfig_roomadmins ’
type=’jid -multi’
label=’Full␣List␣of␣Room␣Admins ’/>

<field
var=’muc#roomconfig_roomdesc ’
type=’text -single ’
label=’Short␣Description␣of␣Room’/>

130

15 XMPP REGISTRAR CONSIDERATIONS

<field
var=’muc#roomconfig_roomname ’
type=’text -single ’
label=’Natural -Language␣Room␣Name’/>

<field
var=’muc#roomconfig_roomowners ’
type=’jid -multi’
label=’Full␣List␣of␣Room␣Owners ’/>

<field
var=’muc#roomconfig_roomsecret ’
type=’text -private ’
label=’The␣Room␣Password ’/>

<field
var=’muc#roomconfig_whois ’
type=’list -single ’
label=’Affiliations␣that␣May␣Discover␣Real␣JIDs␣of␣Occupants ’/>

</form_type >

15.5.4 muc#roominfo FORM_TYPE

<form_type >
<name>http: // jabber.org/protocol/muc#roominfo </name>
<doc>XEP -0045 </doc>
<desc>

Forms enabling the communication of extended service discovery
information about a Multi -User Chat (MUC) room.

</desc>
<field

var=’muc#roominfo_contactjid ’
type=’jid -multi’
label=’Contact␣Addresses␣(normally ,␣room␣owner␣or␣owners)’/>

<field
var=’muc#roominfo_description ’
type=’text -single ’
label=’Short␣Description␣of␣Room’/>

<field
var=’muc#roominfo_lang ’
type=’text -single ’
label=’Natural␣Language␣for␣Room␣Discussions ’/>

<field
var=’muc#roominfo_ldapgroup ’
type=’text -single ’
label=’An␣associated␣LDAP␣group␣that␣defines␣room␣membership;

␣␣␣␣␣␣␣␣␣␣␣␣␣this␣should␣be␣an␣LDAP␣Distinguished␣Name␣according␣to␣an
␣␣␣␣␣␣␣␣␣␣␣␣␣implementation -specific␣or␣deployment -specific␣definition
␣␣␣␣␣␣␣␣␣␣␣␣␣of␣a␣group.’/>

<field
var=’muc#roominfo_logs ’

131

15 XMPP REGISTRAR CONSIDERATIONS

type=’text -single ’
label=’URL␣for␣Archived␣Discussion␣Logs’/>

<field
var=’muc#roominfo_occupants ’
type=’text -single ’
label=’Current␣Number␣of␣Occupants␣in␣Room’/>

<field
var=’muc#roominfo_subject ’
type=’text -single ’
label=’Current␣Discussion␣Topic’/>

<field
var=’muc#roominfo_subjectmod ’
type=’boolean ’
label=’The␣room␣subject␣can␣be␣modified␣by␣participants ’/>

</form_type >

15.6 Status Codes Registry

15.6.1 Process

The XMPP Registrar maintains a registry of values for the ’code’ attribute of the <status/>
element when qualified by the ’http://jabber.org/protocol/muc#user’ namespace.
In order to submit new values to this registry, the registrant shall define an XML fragment of
the following form and either include it in the relevant XMPP Extension Protocol or send it to
the email address <registrar@xmpp.org>:

<statuscode >
<number >the three -digit code number </number >
<stanza >the stanza type of which it is a child (message or presence)

</stanza >
<context >the use case or situation in which the status is used</

context >
<purpose >a natural -language description of the meaning </purpose >
<child >the descriptive child element (reserved for future use)</

child>
</statuscode >

The registrant may register more than one status code at a time, each contained in a separate
<statuscode/> element.

15.6.2 Initial Submission

As part of this document, the following status codes are registered:

<statuscode >

132

15 XMPP REGISTRAR CONSIDERATIONS

<number >100</number >
<stanza >message or presence </stanza >
<context >Entering a room</context >
<purpose >Inform user that any occupant is allowed to see the user’s␣

full␣JID </purpose >
</statuscode >
<statuscode >
␣␣<number >101</ number >
␣␣<stanza >message␣(out␣of␣band)</stanza >
␣␣<context >Affiliation␣change </context >
␣␣<purpose >Inform␣user␣that␣his␣or␣her␣affiliation␣changed␣while␣not␣

in␣the␣room </purpose >
</statuscode >
<statuscode >
␣␣<number >102</ number >
␣␣<stanza >message </stanza >
␣␣<context >Configuration␣change </context >
␣␣<purpose >Inform␣occupants␣that␣room␣now␣shows␣unavailable␣members </

purpose >
</statuscode >
<statuscode >
␣␣<number >103</ number >
␣␣<stanza >message </stanza >
␣␣<context >Configuration␣change </context >
␣␣<purpose >Inform␣occupants␣that␣room␣now␣does␣not␣show␣unavailable␣

members </purpose >
</statuscode >
<statuscode >
␣␣<number >104</ number >
␣␣<stanza >message </stanza >
␣␣<context >Configuration␣change </context >
␣␣<purpose >
␣␣␣␣Inform␣occupants␣that␣a␣non -privacy -related␣room␣configuration␣

change␣has␣occurred
␣␣</purpose >
</statuscode >
<statuscode >
␣␣<number >110</ number >
␣␣<stanza >presence </stanza >
␣␣<context >Any␣room␣presence </context >
␣␣<purpose >Inform␣user␣that␣presence␣refers␣to␣one␣of␣its␣own␣room␣

occupants </purpose >
</statuscode >
<statuscode >
␣␣<number >170</ number >
␣␣<stanza >message␣or␣initial␣presence </stanza >
␣␣<context >Configuration␣change </context >
␣␣<purpose >Inform␣occupants␣that␣room␣logging␣is␣now␣enabled </purpose >
</statuscode >

133

15 XMPP REGISTRAR CONSIDERATIONS

<statuscode >
␣␣<number >171</ number >
␣␣<stanza >message </stanza >
␣␣<context >Configuration␣change </context >
␣␣<purpose >Inform␣occupants␣that␣room␣logging␣is␣now␣disabled </purpose

>
</statuscode >
<statuscode >
␣␣<number >172</ number >
␣␣<stanza >message </stanza >
␣␣<context >Configuration␣change </context >
␣␣<purpose >Inform␣occupants␣that␣the␣room␣is␣now␣non -anonymous </

purpose >
</statuscode >
<statuscode >
␣␣<number >173</ number >
␣␣<stanza >message </stanza >
␣␣<context >Configuration␣change </context >
␣␣<purpose >Inform␣occupants␣that␣the␣room␣is␣now␣semi -anonymous </

purpose >
</statuscode >
<statuscode >
␣␣<number >174</ number >
␣␣<stanza >message </stanza >
␣␣<context >Configuration␣change </context >
␣␣<purpose >Inform␣occupants␣that␣the␣room␣is␣now␣fully -anonymous </

purpose >
</statuscode >
<statuscode >
␣␣<number >201</ number >
␣␣<stanza >presence </stanza >
␣␣<context >Entering␣a␣room </context >
␣␣<purpose >Inform␣user␣that␣a␣new␣room␣has␣been␣created </purpose >
</statuscode >
<statuscode >
␣␣<number >210</ number >
␣␣<stanza >presence </stanza >
␣␣<context >Entering␣a␣room </context >
␣␣<purpose >Inform␣user␣that␣service␣has␣assigned␣or␣modified␣occupant ’

s roomnick </purpose >
</statuscode >
<statuscode >

<number >301</number >
<stanza >presence </stanza >
<context >Removal from room</context >
<purpose >Inform user that he or she has been banned from the room</

purpose >
</statuscode >
<statuscode >

134

15 XMPP REGISTRAR CONSIDERATIONS

<number >303</number >
<stanza >presence </stanza >
<context >Exiting a room</context >
<purpose >Inform all occupants of new room nickname </purpose >

</statuscode >
<statuscode >

<number >307</number >
<stanza >presence </stanza >
<context >Removal from room</context >
<purpose >Inform user that he or she has been kicked from the room</

purpose >
</statuscode >
<statuscode >

<number >321</number >
<stanza >presence </stanza >
<context >Removal from room</context >
<purpose >Inform user that he or she is being removed from the room

because of an affiliation change </purpose >
</statuscode >
<statuscode >

<number >322</number >
<stanza >presence </stanza >
<context >Removal from room</context >
<purpose >Inform user that he or she is being removed from the room

because the room has been changed to members -only and the user
is not a member </purpose >

</statuscode >
<statuscode >

<number >332</number >
<stanza >presence </stanza >
<context >Removal from room</context >
<purpose >Inform user that he or she is being removed from the room

because of a system shutdown </purpose >
</statuscode >

15.7 URI Query Types

As authorized by XMPP URI Query Components 30, the XMPP Registrar maintains a registry
of queries and key-value pairs for use in XMPP URIs (see <http://xmpp.org/registrar/
querytypes.html>).

15.7.1 join

The ”join” querytype is registered as aMUC-related action, with an optional key of ”password”.

30XEP-0147: XMPP URI Query Components <http://xmpp.org/extensions/xep-0147.html>.

135

http://xmpp.org/extensions/xep-0147.html
http://xmpp.org/registrar/querytypes.html
http://xmpp.org/registrar/querytypes.html
http://xmpp.org/extensions/xep-0147.html

15 XMPP REGISTRAR CONSIDERATIONS

Listing 219: Join Action: IRI/URI
xmpp:coven@chat.shakespeare.lit?join

The application MUST either present an interface enabling the user to provide a room nick-
name or populate the room nickname based on configured preferences or nickname discovery.

Listing 220: Join Action: Resulting Stanza
<presence to=’coven@chat.shakespeare.lit/thirdwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
</presence >

The join action MAY include a password for the room. Naturally, access to a URI that includes
a room password MUST be appropriately controlled.

Listing 221: Join Action with Password: IRI/URI
xmpp:coven@chat.shakespeare.lit?join;password=cauldronburn

Listing 222: Join Action with Password: Resulting Stanza
<presence to=’coven@chat.shakespeare.lit/thirdwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc’>
<password >cauldronburn </password >

</x>
</presence >

The following submission registers the ”join” querytype.

<querytype >
<name>join</name>
<proto >http: // jabber.org/protocol/muc</proto >
<desc>enables joining a multi -user chat room</desc>
<doc>XEP -0045 </doc>
<keys>

<key>
<name>password </name>
<desc>the password required to enter a multi -user chat room</

desc>
</key>

</keys>
</querytype >

15.7.2 invite

The ”invite” querytype is registered as a MUC-related action, with an optional key of ”jid”.

136

15 XMPP REGISTRAR CONSIDERATIONS

Listing 223: Invite Action: IRI/URI
xmpp:coven@chat.shakespeare.lit?invite;jid=hecate@shakespeare.lit

If the joining user is not yet in the room, the application MUST send two stanzas: the first to
join the room and the second to invite the other individual. If the joining user is in the room
already, the application shall send only the invitation stanza.

Listing 224: Invite Action: Resulting Stanza(s)
<presence to=’coven@chat.shakespeare.lit/thirdwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
</presence >

<message to=’coven@chat.shakespeare.lit’>
<x xmlns=’http: // jabber.org/protocol/muc#user’>

<invite to=’hecate@shakespeare.lit’/>
</x>

</message >

The URI may include multiple invitees:

Listing 225: Invite Action With Multiple Invitees: IRI/URI
xmpp:coven@chat.shakespeare.lit?invite;jid=hecate@shakespeare.lit;jid=

bard@shakespeare.lit

Listing 226: Invite Action With Multiple Invitees: Resulting Stanza
<message to=’coven@chat.shakespeare.lit’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<invite to=’hecate@shakespeare.lit’/>
<invite to=’bard@shakespeare.lit’/>

</x>
</message >

The URI may also include a password:

Listing 227: Invite Action With Password: IRI/URI
xmpp:coven@chat.shakespeare.lit?invite;jid=hecate@shakespeare.lit;

password=cauldronburn

If the joining user is not yet in the room, the application MUST send two stanzas: the first to
join the room and the second to invite the other individual. If the joining user is in the room
already, the application shall send only the invitation stanza.

137

16 BUSINESS RULES

Listing 228: Invite Action With Password: Resulting Stanza(s)
<presence to=’coven@chat.shakespeare.lit/thirdwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc’/>
</presence >

<message to=’coven@chat.shakespeare.lit’>
<x xmlns=’http: // jabber.org/protocol/muc#user’>

<invite to=’hecate@shakespeare.lit’/>
<password >cauldronburn </password >

</x>
</message >

The following submission registers the ”invite” querytype.

<querytype >
<name>invite </name>
<proto >http: // jabber.org/protocol/muc</proto >
<desc>enables simultaneously joining a groupchat room and inviting

others </desc>
<doc>XEP -0045 </doc>
<keys>

<key>
<name>jid</name>
<desc>the Jabber ID of the invitee </desc>

</key>
<key>

<name>password </name>
<desc>the password required to enter a multi -user chat room</

desc>
</key>

</keys>
</querytype >

16 Business Rules

16.1 Addresses

In order to provide consistency regarding the addresses captured in room JIDs, Room IDs
MUST match the Nodeprep profile of Stringprep and Room Nicknames MUST match the
Resourceprep profile of Stringprep (both of these are defined in RFC 3920). Although not
explicitly stated in RFC 3920, both the Room ID (node) and RoomNickname (resource) portions
of a Room JID MUST be of non-zero length. In addition, a MUC service MUST NOT allow empty
or invisible Room Nicknames (i.e., Room Nicknames that consist only of one or more space
characters).
It is up to the service implementation whether it will further restrict roomnicks (e.g., by

138

16 BUSINESS RULES

applying case folding routines, the Nodeprep profile of stringprep, or other restrictions).

16.2 Message

1. If an occupant wants to send a message to all other occupants, a MUC client MUST set
the ’type’ attribute to a value of ”groupchat”. A service MAY ignore messages that are
improperly typed, or reject them with a <bad-request/> error.

2. If a MUC service receives a message directed to the room or to a single occupant from a
user who has a role of ”none”, the service MUST NOT deliver the message and SHOULD
return the message to the sender with a <forbidden/> error.

3. If a MUC service receives a message directed to a room that does not exist or is not yet
unlocked, the service SHOULD return the message to the sender with an <item-not-
found/> error.

4. A MUC service SHOULD pass extended information (e.g., an XHTML version of the
message body) through to occupants unchanged; however, a MUC service MAY disallow
message specific extensions (see the Allowable Traffic section of this document).

5. A MUC client MAY generate extensions that conform to the Message Events 31 or
Chat State Notifications 32 specification; however, a MUC service MAY disallow these
extensions (see the Allowable Traffic section of this document).

16.3 Presence

1. A room MUST silently ignore unavailable presence received from a user who has a role
of ”none”.

2. Only the MUC service itself SHOULD generate extended presence infor-
mation about roles, affiliations, full JIDs, or status codes qualified by the
’http://jabber.org/protocol/muc#user’ namespace (based on information the ser-
vice knows about occupants, e.g., roles, or as a result of actions taken by a moderator
or room administrator). A client SHOULD NOT presume to generate such information.
If a MUC service receives such extended presence information from an occupant, it
MUST NOT reflect it to other occupants. (A client MAY generate extended presence
information qualified by the ’http://jabber.org/protocol/muc#user’ namespace in

31XEP-0022: Message Events <http://xmpp.org/extensions/xep-0022.html>.
32XEP-0085: Chat State Notifications <http://xmpp.org/extensions/xep-0085.html>.

139

http://xmpp.org/extensions/xep-0022.html
http://xmpp.org/extensions/xep-0085.html
http://xmpp.org/extensions/xep-0022.html
http://xmpp.org/extensions/xep-0085.html

16 BUSINESS RULES

order to supply a password, but naturally this is not reflected to other occupants.)

3. A MUC service SHOULD allow all other presence information to pass through, although
it MAY choose to block extended presence information; see the Allowable Traffic section
of this document.

4. In order to appropriately inform occupants of room roles and affiliations, and to make it
easier for clients to track the current state of all users in the room, MUC service imple-
mentations MUST provide extended presence information about roles and affiliations
in all presence stanzas, including presence stanzas of type ”unavailable” sent when a
user exits the room for any reason.

5. If a privilege is revoked, the service MUST note that by sending an <x/> element
qualified by the ’http://jabber.org/protocol/muc#user’ namespace and containing an
<item/> child element with the ’role’ and/or ’affiliation’ attributes set to a value that
indicates the loss of the relevant privilege. All future presence stanzas for the occupant
MUST include the updated role and affiliation, until and unless they change again.

6. A MUC service MUST send extended presence to a client even if the client did not send
an empty <x/> element qualified by the ’http://jabber.org/protocol/muc’ namespace
on entering the room; naturally, a client MUST ignore such information if it does not
understand it (in accordance with RFC 3920).

7. Extended presence about roles and affiliations sent in the muc#user namespace MUST
include the full JID (not the bare JID) as the value of the ’jid’ attribute.

8. A client MAY send a custom exit message if desired (as is often done in IRC channels) by
including a <status/> element in the presence stanza of type ”unavailable” sent when
exiting a room.

16.4 IQ

1. MUC is designed for sharing of messages and presence, not IQs. An IQ sent to the JID
of the room itself is handled by the roomand is not reflected to all of the roomoccupants.

2. If an occupant wants to send an IQ stanza to another user in a non-anonymous room,
the sender SHOULD send the request directly to the recipient’s bare JID or full JID, rather
than attempting to send the request through the room (i.e., via the recipient’s room JID).

140

17 IMPLEMENTATION NOTES

3. If an occupant wants to send an IQ stanza to another user in a semi-anonymous room,
the sender can direct the stanza to the recipient’s room JID and the service MAY forward
the stanza to the recipient’s real JID. However, a MUC service MUST NOT reveal the
sender’s real JID to the recipient at any time, nor reveal the recipient’s real JID to the
sender.

4. A MUC client MUST send only the ’affiliation’ attribute or the ’role’ at-
tribute in the <item/> element contained within an IQ set qualified by the
’http://jabber.org/protocol/muc#admin’ namespace; if a moderator, admin, or owner
attempts to modify both the affiliation and role of the same item in the same IQ set,
the service MUST return a <bad-request/> error to the sender. However, a MUC service
MAY modify a role based on a change to an affiliation and thus MAY send presence
updates that include both a modified role and a modified affiliation.

5. In IQ sets regarding roles, a MUC client MUST include the ’nick’ attribute only; in IQ
results regarding roles, a MUC service MUST include the ’nick’, ’role’, ’affiliation’, and
’jid’ attributes (with the value of the latter set to the user’s full JID).

6. In IQ sets regarding affiliations, a MUC client MUST include the ’jid’ attribute only (with
the value set to the bare JID); in IQ results regarding affiliations, a MUC service MUST
NOT include the ’role’ attribute, MUST include the ’affiliation’ attribute and the ’jid’
attribute (with the value set to the bare JID), and SHOULD include the ’nick’ attribute (ex-
cept if the affiliation is ”outcast”, since outcasts SHOULDNOThave reserved nicknames).

17 Implementation Notes

The following guidelines may assist client and component developers in creating MUC imple-
mentations.

17.1 Services

1. In handling messages sent by visitors in a moderated room, a MUC service MAY queue
each message for approval by a moderator and MAY inform the sender that the message
is being held for approval; however, such behavior is OPTIONAL, and definition of a
message approval protocol (e.g., using Data Forms as defined in XEP-0004) is out of
scope for this document.

2. It is common for MUC services to provide in-roommessages when certain events occur,
such as when the subject changes, when an occupant enters or exits, or when a room is

141

17 IMPLEMENTATION NOTES

destroyed. Such messages are entirely OPTIONAL and are left up to the implementation
or deployment, but if used MUST be messages of type ”groupchat” sent from the room
JID itself (<room@service>) rather than a specific occupant (<room@service/nick>).
However, in general it is preferable for the receiving client to generate such mes-
sages based on events in the room (e.g., user entrances and exits) as well as specific
status codes provided inMUC; thiswill help ensure correct localization of suchmessages.

3. Out of courtesy, a MUC service MAY send an out-of-room <message/> to an occupant
who is kicked or banned, and MAY broadcast an in-room <message/> to all remaining
occupants informing them that the occupant has been kicked or banned from the
room. However, such messages are OPTIONAL, and indeed are unnecessary since the
information required for a receiving client to generate such messages is communicated
in the presence stanzas (specifically the status codes) sent by a MUC service.

4. Out of courtesy, a MUC service MAY send an out-of-room <message/> if a user’s affilia-
tion changes while the user is not in the room; the message SHOULD be sent from the
room to the user’s bare JID, MAY contain a <body/> element describing the affiliation
change, and MUST contain a status code of 101.

5. There is no requirement that a MUC service shall provide special treatment
for users of the older ”groupchat 1.0” protocol, such as messages that con-
tain equivalents to the extended presence information that is qualified by the
’http://jabber.org/protocol/muc#user’ namespace.

6. Room types MAY be configured in any combination. A MUC service MAY support or
allow any desired room types or combinations thereof.

7. A MUC service MAY limit the number of configuration options presented to an owner
after initial configuration has been completed, e.g. because certain options cannot take
effect without restarting the service.

8. A MUC service MAY provide an interface to room creation and configuration (e.g., in
the form of a special XMPP entity or a Web page), so that the ostensible room owner is
actually the application instead of a human user.

9. A MUC service MAY choose to make available a special in-room resource that provides
an interface to administrative functionality (e.g., a ”user” named ”ChatBot”), which
occupants could interact with directly, thus enabling admins to type ’/command
parameter’ in a private message to that ”user”. Obviously this kind of implementation

142

17 IMPLEMENTATION NOTES

would require the service to add a ’ChatBot’ user to the room when it is created, and
to prevent any occupant from having the nickname ’ChatBot’ in the room. This might
be difficult to ensure in some implementations or deployments. In any case, any such
interface is OPTIONAL.

10. A MUC service SHOULD remove a user if the service receives a delivery-related error
in relation to a stanza it has previously sent to the user; the delivery-related errors
are <gone/>, <item-not-found/>, <recipient-unavailable/>, <redirect/>, <remote-server-
not-found/>, and <remote-server-timeout/>.

11. AMUC service MAY choose to discard extended presence information that is attached to
a <presence/> stanza before reflecting the presence change to the occupants of a room.
That is, an implementation MAY choose to reflect only the <show/>, <status/>, and <pri-
ority/> child elements of the presence element as specified in the XML schema for the
’jabber:client’ namespace, with the result that presence ”changes” in extended names-
paces (e.g., gabber:x:music:info) are not passed through to occupants. If a service pro-
hibits certain extended namespaces, it SHOULD provide a description of allowable traffic
at the well-known Service Discovery node ’http://jabber.org/protocol/muc#traffic’ as
described in the Allowable Traffic section of this document.

12. A MUC service MAY choose to discard extended information attached to <mes-
sage/> stanzas before reflecting the message to the occupants of a room. An ex-
ample of such extended information is the lightweight text markup specified by
XHTML-IM 33. If a service prohibits certain extended namespaces, it SHOULD pro-
vide a description of allowable traffic at the well-known Service Discovery node
’http://jabber.org/protocol/muc#traffic’ as described in the Allowable Traffic section
of this document.

13. A MUC service MAY choose to ”lock down” room nicknames (e.g., hardcoding the room
nickname to the bare JID of the occupant). If so, the service MUST treat the locked down
nickname as a reserved room nickname and MUST support the protocol specified in the
Discovering Reserved Room Nickname section of this document.

17.1.1 Allowable Traffic

As noted, a service (more precisely, a properly-configured room) MAY discard some or all
extended namespaces attached to <message/> and <presence/> stanzas that are intended for
reflection from the sender through the room to all of the room occupants. If the room does so,
it SHOULD enable senders to discover the list of allowable extensions by sending a disco#info
33XEP-0071: XHTML-IM <http://xmpp.org/extensions/xep-0071.html>.

143

http://xmpp.org/extensions/xep-0071.html
http://xmpp.org/extensions/xep-0071.html

17 IMPLEMENTATION NOTES

query to the well-known Service Discovery node ’http://jabber.org/protocol/muc#traffic’, re-
turning one <feature/> element for each namespace supported in the result. If the room does
not allow any extended namespaces, it MUST return an empty query as specified in XEP-0030.
If the roomdoes not support the ”#traffic” node, itMUST return a <feature-not-implemented/>
error in response to queries sent to the ’http://jabber.org/protocol/muc#traffic’ node.
The following example shows a room that allows the ’http://jabber.org/protocol/xhtml-im’
and ’http://jabber.org/protocol/rosterx’ namespaces only, but no other extended names-
paces.

Listing 229: User Queries Service Regarding Allowable Namespaces
<iq from=’wiccarocks@shakespeare.lit/laptop ’

to=’heath@chat.shakespeare.lit’
id=’allow1 ’
type=’get’>

<query xmlns=’http:// jabber.org/protocol/disco#info’
node=’http: // jabber.org/protocol/muc#traffic ’/>

</iq>

Listing 230: Service Returns Allowable Namespaces
<iq from=’heath@chat.shakespeare.lit’

to=’wiccarocks@shakespeare.lit/laptop ’
id=’allow1 ’
type=’result ’>

<query xmlns=’http:// jabber.org/protocol/disco#info’
node=’http: // jabber.org/protocol/muc#traffic ’>

<feature var=’http:// jabber.org/protocol/xhtml -im’/>
<feature var=’http:// jabber.org/protocol/rosterx ’/>

</query >
</iq>

If a service does not discard any namespaces or does not implement this feature, it MUST
return a <service-unavailable/> error:

Listing 231: Service Returns Service Unavailable
<iq from=’heath@chat.shakespeare.lit’

to=’wiccarocks@shakespeare.lit/laptop ’
id=’allow1 ’
type=’error ’>

<query xmlns=’http:// jabber.org/protocol/disco#info’
node=’http: // jabber.org/protocol/muc#traffic ’/>

<error type=’cancel ’>
<service -unavailable xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

144

17 IMPLEMENTATION NOTES

17.2 Clients

1. Clients MAY present room roles by showing ad-hoc groups for each role within a room
roster. This will enable occupants to clearly visualize which occupants are moderators,
participants, and visitors. However, such a representation is OPTIONAL.

2. Clients MAY implement a variety of interface styles that provide ”shortcuts” to func-
tionality such as changing one’s nickname, kicking or banning users, discovering an
occupant’s full JID, or changing the subject. One option consists of IRC-style commands
such as ’/nick’, ’/kick’, ’/ban’, and ’/whois’; another is to enable a user to right-click
items in a room roster. All such interface styles are OPTIONAL. However, for conve-
nience, a mapping of IRC commands to MUC protocols is provided below.

17.2.1 IRC Command Mapping

Internet Relay Chat clients use a number of common ”shortcut” commands that begin with a
forward slash, such as ’/nick’ and ’/ban’. The following table provides a mapping of IRC-style
commands to MUC protocols, for use by clients that wish to support such functionality.

145

17 IMPLEMENTATION NOTES

Command Function MUC protocol
/ban <roomnick> [comment] bans user with that

roomnick from this room
(client translates roomnick
to bare JID)

<iq id=’someid’
to=’room@service’
type=’set’> <query
xmlns=’http://jabber.org/protocol/muc#admin’>
<item affiliation=’outcast’
jid=’bare-jid-of-user’> <rea-
son>comment</reason>
</item> </query> </iq>

/invite <jid> [comment] invites user with that JID to
this room

<message
to=’room@service’> <x
xmlns=’http://jabber.org/protocol/muc#user’>
<invite to=’jid’> <rea-
son>comment</reason>
</invite> </x> </message>

/join <roomname> [pass] joins room on this service
(roomnick is same as nick in
this room)

<presence
to=’room@service/nick’> <x
xmlns=’http://jabber.org/protocol/muc#user’>
<pass-
word>pass</password>
</x> </presence>

/kick <roomnick> [comment] kicks user with that
roomnick from this room

<iq id=’someid’
to=’room@service’
type=’set’> <query
xmlns=’http://jabber.org/protocol/muc#admin’>
<item nick=’roomnick’
role=’none’> <rea-
son>comment</reason>
</item> </query> </iq>

/msg <roomnick> <foo> sends private message
”foo” to roomnick

<message
to=’room@service/nick’
type=’chat’>
<body>foo</body>
</message>

/nick <newnick> changes nick in this room
to ”newnick”

<presence
to=’room@service/newnick’/>

/part [comment] exits this room (some IRC
clients also support /leave)

<presence
to=’room@service/nick’
type=’unavailable’>
<status>comment</status>
</presence>

/topic <foo> changes subject of this
room to ”foo”

<message
to=’room@service’
type=’groupchat’>
<subject>foo</subject>
</message>

146

18 XML SCHEMAS

Note: Because MUC roomnicks follow the Resourceprep profile of stringprep, they are allowed
to contain a space character, whereas IRC nicknames do not. Although a given client MAY
support quotation characters for this purpose (resulting in commands such as ’/ban ”king
lear” insanity is no defense’), most common quotation characters (such as ” and ’) are also
allowed by Resourceprep, thus leading to added complexity and potential problems with quo-
tation of roomnicks that contain both spaces and quotation characters. Therefore it is NOT
RECOMMENDED for XMPP clients to support IRC-style shortcut commands with roomnicks
that contain space characters.
Note: Many XMPP clients also implement a ’/me ’ command as described in The /me Com-
mand 34. This command does not result in any MUC or IRC protocol action and is therefore
not shown in the foregoing table.

18 XML Schemas

18.1 http://jabber.org/protocol/muc

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http:// jabber.org/protocol/muc’
xmlns=’http: // jabber.org/protocol/muc’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0045: http://www.xmpp.org/extensions/xep -0045. html

</xs:documentation >
</xs:annotation >

<xs:element name=’x’>
<xs:complexType >

<xs:sequence >
<xs:element ref=’history ’ minOccurs=’0’/>
<xs:element name=’password ’ type=’xs:string ’ minOccurs=’0’/>

</xs:sequence >
</xs:complexType >

</xs:element >

<xs:element name=’history ’>
<xs:complexType >

<xs:simpleContent >
<xs:extension base=’empty’>

34XEP-0245: The /me Command <http://xmpp.org/extensions/xep-0245.html>.

147

http://xmpp.org/extensions/xep-0245.html
http://xmpp.org/extensions/xep-0245.html
http://xmpp.org/extensions/xep-0245.html

18 XML SCHEMAS

<xs:attribute name=’maxchars ’ type=’xs:int ’ use=’optional ’/>
<xs:attribute name=’maxstanzas ’ type=’xs:int ’ use=’optional ’

/>
<xs:attribute name=’seconds ’ type=’xs:int ’ use=’optional ’/>
<xs:attribute name=’since’ type=’xs:dateTime ’ use=’optional ’

/>
</xs:extension >

</xs:simpleContent >
</xs:complexType >

</xs:element >

<xs:simpleType name=’empty’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >

18.2 http://jabber.org/protocol/muc#user

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http:// jabber.org/protocol/muc#user’
xmlns=’http: // jabber.org/protocol/muc#user’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0045: http://www.xmpp.org/extensions/xep -0045. html

</xs:documentation >
</xs:annotation >

<xs:element name=’x’>
<xs:complexType >

<xs:choice minOccurs=’0’ maxOccurs=’unbounded ’>
<xs:element ref=’decline ’ minOccurs=’0’/>
<xs:element ref=’destroy ’ minOccurs=’0’/>
<xs:element ref=’invite ’ minOccurs=’0’ maxOccurs=’unbounded ’/>
<xs:element ref=’item’ minOccurs=’0’/>
<xs:element name=’password ’ type=’xs:string ’ minOccurs=’0’/>
<xs:element ref=’status ’ minOccurs=’0’ maxOccurs=’unbounded ’/>

</xs:choice >
</xs:complexType >

</xs:element >

148

18 XML SCHEMAS

<xs:element name=’decline ’>
<xs:complexType >

<xs:sequence >
<xs:element ref=’reason ’ minOccurs=’0’/>

</xs:sequence >
<xs:attribute name=’from’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’to’ type=’xs:string ’ use=’optional ’/>

</xs:complexType >
</xs:element >

<xs:element name=’destroy ’>
<xs:complexType >

<xs:sequence >
<xs:element ref=’reason ’ minOccurs=’0’/>

</xs:sequence >
<xs:attribute name=’jid’ type=’xs:string ’ use=’optional ’/>

</xs:complexType >
</xs:element >

<xs:element name=’invite ’>
<xs:complexType >

<xs:sequence >
<xs:element ref=’reason ’ minOccurs=’0’/>

</xs:sequence >
<xs:attribute name=’from’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’to’ type=’xs:string ’ use=’optional ’/>

</xs:complexType >
</xs:element >

<xs:element name=’item’>
<xs:complexType >

<xs:sequence >
<xs:element ref=’actor’ minOccurs=’0’/>
<xs:element ref=’reason ’ minOccurs=’0’/>
<xs:element ref=’continue ’ minOccurs=’0’/>

</xs:sequence >
<xs:attribute name=’affiliation ’ use=’optional ’>

<xs:simpleType >
<xs:restriction base=’xs:NCName ’>

<xs:enumeration value=’admin ’/>
<xs:enumeration value=’member ’/>
<xs:enumeration value=’none’/>
<xs:enumeration value=’outcast ’/>
<xs:enumeration value=’owner ’/>

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:attribute name=’jid’ type=’xs:string ’ use=’optional ’/>

149

18 XML SCHEMAS

<xs:attribute name=’nick’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’role’ use=’optional ’>

<xs:simpleType >
<xs:restriction base=’xs:NCName ’>

<xs:enumeration value=’moderator ’/>
<xs:enumeration value=’none’/>
<xs:enumeration value=’participant ’/>
<xs:enumeration value=’visitor ’/>

</xs:restriction >
</xs:simpleType >

</xs:attribute >
</xs:complexType >

</xs:element >

<xs:element name=’actor’>
<xs:complexType >

<xs:simpleContent >
<xs:extension base=’empty’>

<xs:attribute name=’jid’ type=’xs:string ’ use=’required ’/>
</xs:extension >

</xs:simpleContent >
</xs:complexType >

</xs:element >

<xs:element name=’continue ’>
<xs:complexType >

<xs:simpleContent >
<xs:extension base=’empty’>

<xs:attribute name=’thread ’ type=’xs:string ’ use=’optional ’/
>

</xs:extension >
</xs:simpleContent >

</xs:complexType >
</xs:element >

<xs:element name=’status ’>
<xs:complexType >

<xs:attribute name=’code’ use=’required ’>
<xs:simpleType >

<xs:restriction base=’xs:int ’>
<xs:minInclusive value=’100’/>
<xs:maxInclusive value=’999’/>

</xs:restriction >
</xs:simpleType >

</xs:attribute >
</xs:complexType >

</xs:element >

<xs:element name=’reason ’ type=’xs:string ’/>

150

18 XML SCHEMAS

<xs:simpleType name=’empty’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >

18.3 http://jabber.org/protocol/muc#admin

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http:// jabber.org/protocol/muc#admin’
xmlns=’http: // jabber.org/protocol/muc#admin ’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0045: http://www.xmpp.org/extensions/xep -0045. html

</xs:documentation >
</xs:annotation >

<xs:element name=’query’>
<xs:complexType >

<xs:sequence >
<xs:element ref=’item’ maxOccurs=’unbounded ’/>

</xs:sequence >
</xs:complexType >

</xs:element >

<xs:element name=’item’>
<xs:complexType >

<xs:sequence >
<xs:element ref=’actor’ minOccurs=’0’/>
<xs:element ref=’reason ’ minOccurs=’0’/>

</xs:sequence >
<xs:attribute name=’affiliation ’ use=’optional ’>

<xs:simpleType >
<xs:restriction base=’xs:NCName ’>

<xs:enumeration value=’admin ’/>
<xs:enumeration value=’member ’/>
<xs:enumeration value=’none’/>
<xs:enumeration value=’outcast ’/>
<xs:enumeration value=’owner ’/>

151

18 XML SCHEMAS

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:attribute name=’jid’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’nick’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’role’ use=’optional ’>

<xs:simpleType >
<xs:restriction base=’xs:NCName ’>

<xs:enumeration value=’moderator ’/>
<xs:enumeration value=’none’/>
<xs:enumeration value=’participant ’/>
<xs:enumeration value=’visitor ’/>

</xs:restriction >
</xs:simpleType >

</xs:attribute >
</xs:complexType >

</xs:element >

<xs:element name=’actor’>
<xs:complexType >

<xs:simpleContent >
<xs:extension base=’empty’>

<xs:attribute name=’jid’ type=’xs:string ’ use=’required ’/>
</xs:extension >

</xs:simpleContent >
</xs:complexType >

</xs:element >

<xs:element name=’reason ’ type=’xs:string ’/>

<xs:simpleType name=’empty’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >

18.4 http://jabber.org/protocol/muc#owner

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http:// jabber.org/protocol/muc#owner’
xmlns=’http: // jabber.org/protocol/muc#owner ’
elementFormDefault=’qualified ’>

152

18 XML SCHEMAS

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0045: http://www.xmpp.org/extensions/xep -0045. html

</xs:documentation >
</xs:annotation >

<xs:import
namespace=’jabber:x:data ’
schemaLocation=’http://www.xmpp.org/schemas/x-data.xsd’/>

<xs:element name=’query’>
<xs:complexType >

<xs:choice xmlns:xdata=’jabber:x:data ’ minOccurs=’0’>
<xs:element ref=’xdata:x ’/>
<xs:element ref=’destroy ’/>

</xs:choice >
</xs:complexType >

</xs:element >

<xs:element name=’destroy ’>
<xs:complexType >

<xs:sequence >
<xs:element name=’password ’ type=’xs:string ’ minOccurs=’0’/>
<xs:element name=’reason ’ type=’xs:string ’ minOccurs=’0’/>

</xs:sequence >
<xs:attribute name=’jid’ type=’xs:string ’ use=’optional ’/>

</xs:complexType >
</xs:element >

<xs:simpleType name=’empty’>
<xs:restriction base=’xs:string ’>

<xs:enumeration value=’’/>
</xs:restriction >

</xs:simpleType >

</xs:schema >

18.5 http://jabber.org/protocol/muc#unique

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http:// jabber.org/protocol/muc#unique ’
xmlns=’http: // jabber.org/protocol/muc#unique ’
elementFormDefault=’qualified ’>

153

19 ACKNOWLEDGEMENTS

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0045: http://www.xmpp.org/extensions/xep -0045. html

</xs:documentation >
</xs:annotation >

<xs:element name=’unique ’ type=’xs:string ’/>

</xs:schema >

19 Acknowledgements

The author would like to especially recognize the following individuals for their many helpful
comments on various drafts of this proposal: Gaston Dombiak, Joe Hildebrand, Craig Kaes,
Jacek Konieczny, Peter Millard, Jean-Louis Seguineau, Alexey Shchepin, David Sutton, and
David Waite. Thanks also to members of the XSF Technical Review Team for their edits and
suggestions, in particular Peter Mount and Luca Tagliaferri. In addition, more people than the
author can count have have provided feedback in the jdev@conference.jabber.org conference
room and on the standards@xmpp.org and muc@xmpp.org mailing lists.

154

	Introduction
	Scope
	Requirements
	Terminology
	General Terms
	Room Types
	Dramatis Personae

	Roles, Affiliations, and Privileges
	Roles
	Privileges
	Changing Roles

	Affiliations
	Privileges
	Changing Affiliations

	Entity Use Cases
	Discovering Component Support for MUC
	Discovering Rooms
	Querying for Room Information
	Querying for Room Items
	Querying a Room Occupant
	Discovering Client Support for MUC

	Occupant Use Cases
	Order of Events
	Entering a Room
	Groupchat 1.0 Protocol
	Basic MUC Protocol
	Presence Broadcast
	Default Roles
	Non-Anonymous Rooms
	Semi-Anonymous Rooms
	Password-Protected Rooms
	Members-Only Rooms
	Banned Users
	Nickname Conflict
	Max Users
	Locked Room
	Nonexistent Room
	Room Logging
	Discussion History
	Managing Discussion History

	Exiting a Room
	Changing Nickname
	Changing Availability Status
	Inviting Another User to a Room
	Direct Invitation
	Mediated Invitation

	Converting a One-to-One Chat Into a Multi-User Conference
	Occupant Modification of the Room Subject
	Sending a Private Message
	Sending a Message to All Occupants
	Registering with a Room
	Getting Member List
	Discovering Reserved Room Nickname
	Requesting Voice

	Moderator Use Cases
	Modifying the Room Subject
	Kicking an Occupant
	Granting Voice to a Visitor
	Revoking Voice from a Participant
	Modifying the Voice List
	Approving Voice Requests

	Admin Use Cases
	Banning a User
	Banning a Service
	Modifying the Ban List
	Granting Membership to a User
	Granting Membership to a Service
	Revoking Membership
	Modifying the Member List
	Granting Moderator Privileges
	Revoking Moderator Privileges
	Modifying the Moderator List
	Approving Registration Requests

	Owner Use Cases
	Creating a Room
	General Considerations
	Creating an Instant Room
	Creating a Reserved Room
	Requesting a Unique Room Name

	Subsequent Room Configuration
	Notification of Configuration Changes

	Granting Ownership Privileges to a User
	Granting Ownership Privileges to a Service
	Revoking Ownership Privileges
	Modifying the Owner List
	Granting Administrative Privileges to a User
	Granting Administrative Privileges to all Users of a Service
	Revoking Administrative Privileges
	Modifying the Admin List
	Destroying a Room

	Error and Status Codes
	Error Codes
	Status Codes

	Internationalization Considerations
	Security Considerations
	User Authentication and Authorization
	End-to-End Encryption
	Privacy
	Information Leaks
	Anonymity
	Denial of Service
	Other Considerations

	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Service Discovery Category/Type
	Service Discovery Features
	Well-Known Service Discovery Nodes
	Field Standardization
	muc#register FORM_TYPE
	muc#request FORM_TYPE
	muc#roomconfig FORM_TYPE
	muc#roominfo FORM_TYPE

	Status Codes Registry
	Process
	Initial Submission

	URI Query Types
	join
	invite

	Business Rules
	Addresses
	Message
	Presence
	IQ

	Implementation Notes
	Services
	Allowable Traffic

	Clients
	IRC Command Mapping

	XML Schemas
	http://jabber.org/protocol/muc
	http://jabber.org/protocol/muc#user
	http://jabber.org/protocol/muc#admin
	http://jabber.org/protocol/muc#owner
	http://jabber.org/protocol/muc#unique

	Acknowledgements

