
Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Rust Undefined Behavior

Florian “Florob” Zeitz

2023-06-07

1 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

1 Demystifying Undefined Behavior

2 Uninitialized Data

3 Arithmetic

4 Aliasing

5 Writing Unsafe Rust

2 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Definition

undefined behavior — C17
behavior, upon use of a nonportable or erroneous program construct or
of erroneous data, for which this International Standard imposes no
requirements
Note 1 to entry: Possible undefined behavior ranges from ignoring the
situation completely with unpredictable results, to behaving during
translation or program execution in a documented manner
characteristic of the environment (with or without the issuance of a
diagnostic message), to terminating a translation or execution (with the
issuance of a diagnostic message).

3 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Definition

Undefined Behavior — Rust Unsafe Code Guidelines
Undefined Behavior is a concept of the contract between the Rust programmer and
the compiler: The programmer promises that the code exhibits no undefined behavior.
In return, the compiler promises to compile the code in a way that the final program
does on the real hardware what the source program does according to the Rust
Abstract Machine. If it turns out the program does have undefined behavior, the
contract is void, and the program produced by the compiler is essentially garbage (in
particular, it is not bound by any specification; the program does not even have to be
well-formed executable code).
In Rust, the Nomicon and the Reference both have a list of behavior that the language
considers undefined. Rust promises that safe code cannot cause Undefined Behavior —
the compiler and authors of unsafe code takes the burden of this contract on
themselves. For unsafe code, however, the burden is still on the programmer.

4 / 50

https://doc.rust-lang.org/nomicon/what-unsafe-does.html
https://doc.rust-lang.org/reference/behavior-considered-undefined.html

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Perception

A Redditor
Learning that the compiler recognizes UB but instead of point it out concludes
that it should be taken out of the program for speed reasons was insane to me

A HN User
Any instance of undefined behavior should result in a Warning, if not an Error.

A Tech Blogger
[...] compiler writers [...] think that if the programmer even approaches
anything undefined, they can do what ever, completely disregarding, if it
makes logical sense, if it is predictable behavior or is in anyway useful to
software development.

5 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Perception

all of this is false
rarely does a compiler actually detect UB
instead compilers assume UB does not occur
some instances of UB are not detectable
detected UB often does yield a warning

6 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

What does this snippet behave?
(clang 15, -O1)

1 int main(void) {
2 for(int i = 0; i >= 0; i++)
3 ;
4 }
5

6 void after(void) {
7 puts("Hello World");
8 }

terminates runs forever

prints, terminates prints, runs forever

7 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

What does this snippet behave?
(clang 15, -O1)

1 int main(void) {
2 for(int i = 0; i >= 0; i++)
3 ;
4 }
5

6 void after(void) {
7 puts("Hello World");
8 }

terminates runs forever

prints, terminates prints, runs forever

7 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Assembly Output

1 main:
2 # Nothing here
3

4 after:
5 leaq .L.str(%rip), %rdi
6 jmp puts@PLT # TAILCALL
7

8 .L.str:
9 .asciz "Hello World"
10 .size .L.str, 12

8 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Optimization

Initial IR (simplified)

1 @.str = [12 x i8] c"Hello World\00", align 1
2
3 ; Function Attrs: nounwind sspstrong uwtable
4 define dso_local i32 @main() #0 {
5 %1 = alloca i32, align 4
6 %2 = alloca i32, align 4
7 store i32 0, ptr %1, align 4
8 store i32 0, ptr %2, align 4, !tbaa !5
9 br label %3
10
11 3: ; preds = %8, %0
12 %4 = load i32, ptr %2, align 4, !tbaa !5
13 %5 = icmp sge i32 %4, 0
14 br i1 %5, label %8, label %11
15
16 8: ; preds = %3
17 %9 = load i32, ptr %2, align 4, !tbaa !5
18 %10 = add nsw i32 %9, 1
19 store i32 %10, ptr %2, align 4, !tbaa !5
20 br label %3, !llvm.loop !9

22 11: ; preds = %3
23 %12 = load i32, ptr %1, align 4
24 ret i32 %12
25 }
26 ; Function Attrs: nounwind sspstrong uwtable
27 define dso_local void @after() #0 {
28 %1 = call i32 @puts(ptr noundef @.str)
29 ret void
30 }
31
32 !5 = !{!6, !6, i64 0}
33 !6 = !{!"int", !7, i64 0}
34 !7 = !{!"omnipotent char", !8, i64 0}
35 !8 = !{!"Simple C/C++ TBAA"}
36 !9 = distinct !{!9, !10, !11}
37 !10 = !{!"llvm.loop.mustprogress"}
38 !11 = !{!"llvm.loop.unroll.disable"}

9 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Optimization

After SROA on main
1 ; Function Attrs: nounwind sspstrong uwtable
2 define dso_local i32 @main() #0 {
3 br label %1
4
5 1: ; preds = %5, %0
6 %2 = phi i32 [0, %0], [%6, %5]
7 %3 = icmp sge i32 %2, 0
8 br i1 %3, label %5, label %4
9
10 4: ; preds = %1
11 ret i32 0
12
13 5: ; preds = %1
14 %6 = add nsw i32 %2, 1
15 br label %1, !llvm.loop !5
16 }

10 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Optimization

After EarlyCSE on main
1 ; Function Attrs: nounwind sspstrong uwtable
2 define dso_local i32 @main() #0 {
3 br label %1
4
5 1: ; preds = %4, %0
6 %2 = phi i32 [0, %0], [%5, %4]
7 br i1 true, label %4, label %3
8
9 3: ; preds = %1
10 ret i32 0
11
12 4: ; preds = %1
13 %5 = add nsw i32 %2, 1
14 br label %1, !llvm.loop !5
15 }

11 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Optimization

After IPSCCP on module
1 ; Function Attrs: nounwind sspstrong uwtable
2 define dso_local i32 @main() #0 {
3 br label %1
4
5 1: ; preds = %3, %0
6 %2 = phi i32 [0, %0], [%4, %3]
7 br label %3
8
9 3: ; preds = %1
10 %4 = add nsw i32 %2, 1
11 br label %1, !llvm.loop !5
12 }
13
14 !5 = distinct !{!5, !6, !7}
15 !6 = !{!"llvm.loop.mustprogress"}
16 !7 = !{!"llvm.loop.unroll.disable"}

12 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Optimization

After InstCombine and SimplifyCFG on main
1 ; Function Attrs: nounwind sspstrong uwtable
2 define dso_local i32 @main() local_unnamed_addr #0 {
3 br label %1
4
5 1: ; preds = %1, %0
6 br label %1, !llvm.loop !5
7 }
8
9 !5 = distinct !{!5, !6, !7}
10 !6 = !{!"llvm.loop.mustprogress"}
11 !7 = !{!"llvm.loop.unroll.disable"}

13 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Optimization

After LoopDeletion
1 ; Function Attrs: nofree norecurse noreturn nosync nounwind readnone sspstrong uwtable
2 define dso_local i32 @main() local_unnamed_addr #0 {
3 unreachable
4 }

Checks:
Produced values are loop invariant
All exits produce the same value
No instructions have side-effects
The loop must progress (stop here if true)
The loop is definitely not infinite

14 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Why do this?

Shouldn’t we always check for termination?
Loops may be finite, but not provably so
Trade-off:

Always remove dead loops, more UB
Keep some dead loops, less UB
This is a general pattern

15 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Reproducing the Result in Rust

Can we get the same fallthrough in Rust
No C-style loops
Infinite loops are well-defined (we even have loop)
Maybe we can work with unreachable

16 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Reproducing the Result in Rust

unreachable!() panics, so doesn’t work.

1 fn main() {
2 unreachable!();
3 }
4

5 pub fn after() {
6 println!("Hello World");
7 }

1 main:
2 pushq %rax
3 leaq .L2(%rip), %rdi
4 leaq .L3(%rip), %rdx
5 movl $40, %esi
6 callq *panic@GOTPCREL(%rip)
7 ud2
8

9 .L2:
10 .ascii "internal error:

entered unreachable
code"

↪→

↪→

11 ...

17 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Reproducing the Result in Rust

unreachable_unchecked() emits ud2. Always generates an
exception.

1 fn main() {
2 unsafe {
3 unreachable_unchecked();
4 }
5 }
6

7 pub fn after() {
8 println!("Hello World");
9 }

1 main:
2 ud2

18 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Reproducing the Result in Rust

noreturn also emits ud2.

1 use std::arch::asm;
2

3 fn main() {
4 unsafe {
5 asm!("", options(noreturn));
6 }
7 }
8

9 pub fn after() {
10 println!("Hello World");
11 }

1 main:
2 pushq %rax
3 ud2

19 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Reproducing the Result in Rust

Rust configures LLVM to emit ud2 for unreachable
This avoids unexpected results, even though this is UB
In binary crates Rust removes unused functions, even if they are pub

20 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

1 Demystifying Undefined Behavior

2 Uninitialized Data

3 Arithmetic

4 Aliasing

5 Writing Unsafe Rust

21 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

What does this snippet usually print? (optimized)
1 int a, b;
2 if (a) {
3 a = 3;
4 } else {
5 b = 4;
6 }
7 printf("%i\n", a + b);

3 4

5 7

22 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

What does this snippet usually print? (optimized)
1 int a, b;
2 if (a) {
3 a = 3;
4 } else {
5 b = 4;
6 }
7 printf("%i\n", a + b);

3 4

5 7

22 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Uninitialized in safe Rust

Impossible in safe Rust
compiler forbids usage of possibly uninitialized variables

23 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Uninitialized in unsafe Rust

1 fn main() {
2 let mut a = MaybeUninit::<i32>::uninit();
3 let mut b = MaybeUninit::<i32>::uninit();
4

5 if std::env::var("A").is_ok() {
6 a.write(3);
7 } else {
8 b.write(4);
9 }
10

11 let res = unsafe { a.assume_init() + b.assume_init() };
12 println!("{res}");
13 }

24 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Uninitialized in unsafe Rust

Uninitialized memory in Rust must be contained in MaybeUninit
Calling assume_init() when the content is not fully initialized
causes immediate UB
The deprecated std::mem::uninitialized() caused the
same UB
Cf. MaybeUninit’s documentation

25 / 50

https://doc.rust-lang.org/std/mem/union.MaybeUninit.html

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

1 Demystifying Undefined Behavior

2 Uninitialized Data

3 Arithmetic

4 Aliasing

5 Writing Unsafe Rust

26 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

What does this snippet usually print when size is INT_MAX?
(optimized with -O3)

1 int size = ...;
2 if (size > size+1) {
3 puts("Aborted")
4 abort();
5 }
6 puts("Fetching memory");
7 malloc(size+1);

”Fetching memory” ”Aborted”

size Nothing

27 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

What does this snippet usually print when size is INT_MAX?
(optimized with -O3)

1 int size = ...;
2 if (size > size+1) {
3 puts("Aborted")
4 abort();
5 }
6 puts("Fetching memory");
7 malloc(size+1);

”Fetching memory” ”Aborted”

size Nothing

27 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Signed integer overflow (C)

unsigned integer overflow is well-defined: UINT_MAX + 1 == 0
signed integer overflow is not: INT_MAX + 1 == /* undef */
rumours aside INT_MAX + 1 is not INT_MIN
Check equality against INT_MAX

28 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

1 int size = ...;
2 if (size > size+1) {
3 puts("Aborted")
4 abort();
5 }
6 puts("Fetching memory");
7 malloc(size+1);

Only defined behavior is considered
size > size + 1 is always false
Optimization removes the branch

29 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Integer overflow (Rust)

same behaviour for all integer types, signed and unsigned
debug: panic on overflow
release: wrap around on overflow
individual methods for specific requirements:

checked_add()
saturating_add()
wrapping_add()
overflowing_add()

30 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

What does this snippet usually print?
(unoptimized, on an x86 system)

1 uint32_t shifty = 1;
2 shifty = shifty << 32;
3 printf("%"PRIu32"\n", shifty);

0 1

4 32

31 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

What does this snippet usually print?
(unoptimized, on an x86 system)

1 uint32_t shifty = 1;
2 shifty = shifty << 32;
3 printf("%"PRIu32"\n", shifty);

0 1

4 32

31 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Oversized shift amounts (C)

If the value of the right operand is negative or is greater than or
equal to the width of the promoted left operand, the behavior is
undefined.
set variables to zero instead
easily checked when type width is known

32 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Oversized shift amounts (Rust)

debug: panic on oversized shift amount
release: mask right operand to bit width
individual methods for specific requirements:

checked_shl()
wrapping_shl()
overflowing_shl()

33 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

1 Demystifying Undefined Behavior

2 Uninitialized Data

3 Arithmetic

4 Aliasing

5 Writing Unsafe Rust

34 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

What does this snippet usually print?
(optimized, clang or gcc)

1 void f(int *i, float *f) {
2 *i = 42;
3 *f = 16.0;
4 printf("%x\n", *i);
5 }

6 int main(void) {
7 int var;
8 f(&var, &var);
9 return 0;
10 }

2a 10

41800000 0

35 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

What does this snippet usually print?
(optimized, clang or gcc)

1 void f(int *i, float *f) {
2 *i = 42;
3 *f = 16.0;
4 printf("%x\n", *i);
5 }

6 int main(void) {
7 int var;
8 f(&var, &var);
9 return 0;
10 }

2a 10

41800000 0

35 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Strict Aliasing Rule

C allows aliasing
int *pa = &a, *pa aliases a
not all expressions may be used to access an object
expression and object type must match
this restriction is commonly called the strict aliasing rule
with a declared as a float, *pamay be neither read nor written

36 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Exceptions

different signedness
different qualifiers
struct, array or union type with a member of one of the
aforementioned types
character type

37 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Why have this rule?

makes it harder to create trap/niche values
avoids unaligned writes
restricts aliasing (potential for optimizations)

38 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Aliasing and safe Rust

type punning is not possible in safe Rust
Rust guarantees values cannot be mutated in the presence of
aliasing
aliasing in safe Rust is much more restricted than in C
allows for more optimizations than strict aliasing

39 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

How many possible results does this function have?
1 int f(signed int *i1, unsigned int *i2, float *f, char *c) {
2 *i1 = 42;
3 *i2 = 43;
4 *f = 13.;
5 *c = 1;
6 return *i1 + *i2 + *f + *c;
7 }

1 19

531 217

40 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

How many possible results does this function have?
1 int f(signed int *i1, unsigned int *i2, float *f, char *c) {
2 *i1 = 42;
3 *i2 = 43;
4 *f = 13.;
5 *c = 1;
6 return *i1 + *i2 + *f + *c;
7 }

1 19

531 217

40 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Generated Assembly (C)

1 int f(signed int *i1,
2 unsigned int *i2,
3 float *f,
4 char *c)
5 {
6 *i1 = 42;
7 *i2 = 43;
8 *f = 13.;
9 *c = 1;
10 return *i1 + *i2 + *f + *c;
11 }

1 .LCPI0_0:
2 .long 1065353216 # float 1
3 f:
4 movl $42, (%rdi)
5 movl $43, (%rsi)
6 movl $1095761920, (%rdx)
7 movb $1, (%rcx)
8 movl (%rsi), %eax
9 addl (%rdi), %eax
10 cvtsi2ssq %rax, %xmm0
11 addss (%rdx), %xmm0
12 addss .LCPI0_0(%rip), %xmm0
13 cvttss2si %xmm0, %eax
14 retq

41 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Generated Assembly (&mut T)

1 fn f(
2 i1: &mut i32, i2: &mut u32,
3 f: &mut f32, c: &mut i8,
4) -> i32 {
5 *i1 = 42;
6 *i2 = 43;
7 *f = 13.;
8 *c = 1;
9 (
10 *i1 as f32 + *i2 as f32
11 + *f + *c as f32
12) as i32
13 }

1 f:
2 movl $42, (%rdi)
3 movl $43, (%rsi)
4 movl $1095761920, (%rdx)
5 movb $1, (%rcx)
6 movl $99, %eax
7 retq

42 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Aliasing and unsafe Rust

arbitrary aliasing is possible in unsafe Rust
we don’t know what exactly is allowed (yet)
optimizations in the presence of unsafe code have to be
conservative
ongoing work to specify an aliasing model

43 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Stacked Borrows

first(?) potential aliasing model for Rust
lots of UB
allows for many optimizations
some widely used crates have UB under this model, e.g. tokio

44 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Tree Borrows

recent potential aliasing model for Rust
less UB, allows situations the borrow checker forbids
still allows for most optimizations, and even additional ones
Ralf Jung’s Blog Post
Neven Villani’s Description
Recording of Neven Villani’s Talk

45 / 50

https://www.ralfj.de/blog/2023/06/02/tree-borrows.html
https://perso.crans.org/vanille/treebor/index.html
https://www.youtube.com/watch?v=zQ76zLXesxA

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

1 Demystifying Undefined Behavior

2 Uninitialized Data

3 Arithmetic

4 Aliasing

5 Writing Unsafe Rust

46 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Writing Unsafe Rust

writing unsafe Rust can be difficult
have to watch out for UB
we don’t even know what exactly is or isn’t UB in unsafe Rust
Resources/Tools:

Unsafe Code Guidelines
The Rustonomicon
Language Reference
Miri

47 / 50

https://rust-lang.github.io/unsafe-code-guidelines/
https://doc.rust-lang.org/nomicon/
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
https://github.com/rust-lang/miri

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

The Good News

everything that is safe in safe Rust is still safe in an unsafe block
unsafe blocks allow only a few additional operations:

dereference raw pointers
call unsafe functions
implement unsafe traits
mutate statics
access union fields

48 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Miri

interpreter that can detect undefined behavior
detects:

out-of-bounds memory accesses and use-after-free
invalid use of uninitialized data
violation of intrinsic preconditions (e.g.
unreachable_unchecked() being reached)
insufficiently aligned memory accesses and references
violation of some basic type invariants (e.g. bool that is not 0 or 1,
invalid enum discriminant)
experimental: Violations of aliasing rules (according to Stacked or Tree
Borrows)
experimental: Data races

49 / 50

Rust
Undefined
Behavior

Florob

Demystifying
Undefined
Behavior

Uninitialized
Data

Arithmetic

Aliasing

Writing
Unsafe Rust

Questions

Thank you for your attention.
Any questions?

https://babelmonkeys.de/~florob/talks/RC-2023-06-07-unsafe-undefined.pdf

50 / 50

https://babelmonkeys.de/~florob/talks/RC-2023-06-07-unsafe-undefined.pdf
https://babelmonkeys.de/~florob/talks/RC-2023-06-07-unsafe-undefined.pdf

	Demystifying Undefined Behavior
	Uninitialized Data
	Arithmetic
	Aliasing
	Writing Unsafe Rust
	Questions

